
Message From Space

Ivan Zaitsev

Jul 30, 2020

CONTENTS

1 A Personal Appeal to Scientists and Engineers From All Over the World 3

2 Condensed Version 5

3 #1. Numbers 35

4 #2. Numbers (cont.) 41

5 #3. Negative Numbers 45

6 #4. Equality 55

7 #5. Successor 59

8 #6. Predecessor 65

9 #7. Sum 69

10 #8. Variables 73

11 #9. Product 77

12 #10. Integer Division 81

13 #11. Equality and Booleans 85

14 #12. Strict Less-Than 91

15 #13. Modulate 97

16 #14. Demodulate 103

17 #15. Send 105

18 #16. Negate 109

19 #17. Function Application 111

20 #18. S Combinator 113

21 #19. C Combinator 115

22 #20. B Combinator 117

i

23 #21. True (K Combinator) 119

24 #22. False 121

25 #23. Power of Two 123

26 #24. I Combinator 127

27 #25. Cons (or Pair) 129

28 #26. Car (First) 131

29 #27. Cdr (Tail) 133

30 #28. Nil (Empty List) 135

31 #29. Is Nil (Is Empty List) 137

32 #30. List Construction Syntax 139

33 #31. Vector 141

34 #32. Draw 143

35 #33. Checkerboard 145

36 #34. Multiple Draw 147

37 #35. Modulate List 149

38 #36. Send (0) 151

39 #37. Is 0 153

40 #38. Interact 155

41 #39. Interaction Protocol 157

42 #40. Stateless Drawing Protocol 159

43 #41. Stateful Drawing Protocol 161

44 #42. Galaxy 163

45 Final Tournament 165

46 Galaxy Evaluator in Pseudocode 177

47 Alien Proxy Protocol 179

ii

Message From Space

This documentation contains artifacts from a joint deciphering effort of a mysterious radio transmission from outer
space.

To skip the investigation part and go straight to the results, go to Condensed Version.

To read the whole story, go to A Personal Appeal to Scientists and Engineers From All Over the World. Beware: pages
may contain speculations and unproven theories!

CONTENTS 1

Message From Space

2 CONTENTS

CHAPTER

ONE

A PERSONAL APPEAL TO SCIENTISTS AND ENGINEERS FROM
ALL OVER THE WORLD

Hello.

My name is Ivan Zaitsev. I’m a staff astronomer at Pegovka observatory in the Urals region of Russia.

Several days ago we have been monitoring radio signals from a small region of sky around HD 190360 for our
exoplanet research purposes. We have registered a peculiar radio transmission which cannot be attributed to any
natural source in this area.

We tried to analyze and decode this message. But we don’t have any trained deciphering specialists here on site, and
we don’t have appropriate software to analyze this message. We have made very little progress so far.

I believe that decoding this message can lead to a major breakthrough in our understanding of the Universe. I believe
that science should be a joint effort. Together we can crack this problem much faster that any single research group.

That’s why I decided to publish a recording of this message and create a special documentation page to
collaborate on the explanation.

If you have any idea at all on how to decode and explain the message, please send a Pull Request to the appropriate
page! We cannot move forward without this!

Sincerely, Ivan Zaitsev

3

http://simbad.u-strasbg.fr/simbad/sim-id?Ident=HD+190360

Message From Space

4 Chapter 1. A Personal Appeal to Scientists and Engineers From All Over the World

CHAPTER

TWO

CONDENSED VERSION

Note: Following documentation was generated automatically using a script contributed in our Discord chat. Decoded
text representation may contain inaccuracies and will be revised with help from our participants.

2.1 #1. Numbers

0
1
2
3
4
5
6
7
8
...

5

https://discord.gg/xvMJbas

Message From Space

2.2 #2. Numbers (cont.)

Left vertical and top horizontal bars define glyph size. Number glyphs are always square. All other pixels except these
bars are bits of encoded number written left to right and top to bottom. Top left pixel is always black in numbers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
...
506 507 508 509 510 511 512 513 514
...
65535 65536 65537
...

2.3 #3. Negative Numbers

Additional pixel in the vertical bar denotes a negative number.

4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17
...
-510 -511 -512 -513 -514
...
-65535 -65536 -65537
...

2.4 #4. Equality

=
0 = 0

(continues on next page)

6 Chapter 2. Condensed Version

Message From Space

(continued from previous page)

1 = 1
2 = 2
3 = 3
...
10 = 10
11 = 11
...
-1 = -1
-2 = -2
...

2.5 #5. Successor

inc
ap inc 0 = 1
ap inc 1 = 2
ap inc 2 = 3
ap inc 3 = 4
...
ap inc 300 = 301
ap inc 301 = 302
...
ap inc -1 = 0
ap inc -2 = -1
ap inc -3 = -2
...

2.5. #5. Successor 7

Message From Space

2.6 #6. Predecessor

dec
ap dec 1 = 0
ap dec 2 = 1
ap dec 3 = 2
ap dec 4 = 3
...
ap dec 1024 = 1023
...
ap dec 0 = -1
ap dec -1 = -2
ap dec -2 = -3
...

2.7 #7. Sum

add
ap ap add 1 2 = 3
ap ap add 2 1 = 3
ap ap add 0 1 = 1

(continues on next page)

8 Chapter 2. Condensed Version

Message From Space

(continued from previous page)

ap ap add 2 3 = 5
ap ap add 3 5 = 8
...

2.8 #8. Variables

Variables have a white border. Inverted number inside the border identifies the variable.

x0 x1 x2 x3 x4 ...
ap ap add 0 x0 = x0
ap ap add 0 x1 = x1
ap ap add 0 x2 = x2
...
ap ap add x0 0 = x0
ap ap add x1 0 = x1
ap ap add x2 0 = x2
...
ap ap add x0 x1 = ap ap add x1 x0
...

2.8. #8. Variables 9

Message From Space

2.9 #9. Product

mul
ap ap mul 4 2 = 8
ap ap mul 3 4 = 12
ap ap mul 3 -2 = -6
ap ap mul x0 x1 = ap ap mul x1 x0
ap ap mul x0 0 = 0
ap ap mul x0 1 = x0
...

2.10 #10. Integer Division

Rounds toward zero.

div
ap ap div 4 2 = 2
ap ap div 4 3 = 1
ap ap div 4 4 = 1

(continues on next page)

10 Chapter 2. Condensed Version

Message From Space

(continued from previous page)

ap ap div 4 5 = 0
ap ap div 5 2 = 2
ap ap div 6 -2 = -3
ap ap div 5 -3 = -1
ap ap div -5 3 = -1
ap ap div -5 -3 = 1
ap ap div x0 1 = x0
...

2.10. #10. Integer Division 11

Message From Space

2.11 #11. Equality and Booleans

t is true, f is false.

eq
ap ap eq x0 x0 = t
ap ap eq 0 -2 = f
ap ap eq 0 -1 = f
ap ap eq 0 0 = t
ap ap eq 0 1 = f

(continues on next page)

12 Chapter 2. Condensed Version

Message From Space

(continued from previous page)

ap ap eq 0 2 = f
...
ap ap eq 1 -1 = f
ap ap eq 1 0 = f
ap ap eq 1 1 = t
ap ap eq 1 2 = f
ap ap eq 1 3 = f
...
ap ap eq 2 0 = f
ap ap eq 2 1 = f
ap ap eq 2 2 = t
ap ap eq 2 3 = f
ap ap eq 2 4 = f
...
ap ap eq 19 20 = f
ap ap eq 20 20 = t
ap ap eq 21 20 = f
...
ap ap eq -19 -20 = f
ap ap eq -20 -20 = t
ap ap eq -21 -20 = f
...

2.11. #11. Equality and Booleans 13

Message From Space

2.12 #12. Strict Less-Than

lt
ap ap lt 0 -1 = f
ap ap lt 0 0 = f
ap ap lt 0 1 = t
ap ap lt 0 2 = t
...
ap ap lt 1 0 = f
ap ap lt 1 1 = f
ap ap lt 1 2 = t
ap ap lt 1 3 = t
...
ap ap lt 2 1 = f
ap ap lt 2 2 = f
ap ap lt 2 3 = t
ap ap lt 2 4 = t

(continues on next page)

14 Chapter 2. Condensed Version

Message From Space

(continued from previous page)

...
ap ap lt 19 20 = t
ap ap lt 20 20 = f
ap ap lt 21 20 = f
...
ap ap lt -19 -20 = f
ap ap lt -20 -20 = f
ap ap lt -21 -20 = t
...

2.13 #13. Modulate

mod
ap mod 0 = [0]
ap mod 1 = [1]
ap mod -1 = [-1]
ap mod 2 = [2]
ap mod -2 = [-2]
...
ap mod 16 = [16]
ap mod -16 = [-16]
...
ap mod 255 = [255]
ap mod -255 = [-255]
ap mod 256 = [256]
ap mod -256 = [-256]
...

2.13. #13. Modulate 15

Message From Space

2.14 #14. Demodulate

dem
ap dem ap mod x0 = x0
ap mod ap dem x0 = x0

16 Chapter 2. Condensed Version

Message From Space

2.15 #15. Send

send

ap send x0 = x1

humans x0 aliens
humans ~~~~~ ap mod x0 aliens

(continues on next page)

2.15. #15. Send 17

Message From Space

(continued from previous page)

humans x0 aliens
humans x1 aliens
humans ap mod x1 ~~~~~ aliens
humans x1 aliens

2.16 #16. Negate

neg
ap neg 0 = 0
ap neg 1 = -1
ap neg -1 = 1
ap neg 2 = -2
ap neg -2 = 2
...

2.17 #17. Function Application

ap f x is f(x)

18 Chapter 2. Condensed Version

Message From Space

The last two lines demonstrate that function application ap allows curried (i.e. partially evaluated) functions, by
defining inc as the function x -> 1 + x.

ap
ap inc ap inc 0 = 2
ap inc ap inc ap inc 0 = 3
ap inc ap dec x0 = x0
ap dec ap inc x0 = x0
ap dec ap ap add x0 1 = x0
ap ap add ap ap add 2 3 4 = 9
ap ap add 2 ap ap add 3 4 = 9
ap ap add ap ap mul 2 3 4 = 10
ap ap mul 2 ap ap add 3 4 = 14
inc = ap add 1
dec = ap add ap neg 1
...

2.18 #18. S Combinator

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

s
ap ap ap s x0 x1 x2 = ap ap x0 x2 ap x1 x2
ap ap ap s add inc 1 = 3
ap ap ap s mul ap add 1 6 = 42
...

2.19 #19. C Combinator

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

c
ap ap ap c x0 x1 x2 = ap ap x0 x2 x1
ap ap ap c add 1 2 = 3
...

2.18. #18. S Combinator 19

https://en.wikipedia.org/wiki/B,_C,_K,_W_system
https://en.wikipedia.org/wiki/B,_C,_K,_W_system

Message From Space

2.20 #20. B Combinator

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

b
ap ap ap b x0 x1 x2 = ap x0 ap x1 x2
ap ap ap b inc dec x0 = x0
...

2.21 #21. True (K Combinator)

Decoded as t, because it has a meaning of boolean True.

t
ap ap t x0 x1 = x0
ap ap t 1 5 = 1
ap ap t t i = t
ap ap t t ap inc 5 = t
ap ap t ap inc 5 t = 6
...

2.22 #22. False

Decoded as f, because it has a meaning of boolean False.

20 Chapter 2. Condensed Version

https://en.wikipedia.org/wiki/B,_C,_K,_W_system

Message From Space

f
ap ap f x0 x1 = x1
f = ap s t

2.22. #22. False 21

Message From Space

22 Chapter 2. Condensed Version

Message From Space

2.23 #23. Power of Two

2.23. #23. Power of Two 23

Message From Space

Recursive function: pwr2 definition uses pwr2.

pwr2
pwr2 = ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1
ap pwr2 0 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap ap ap c ap eq 0 1 0 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap ap ap eq 0 0 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap t 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = 1
ap pwr2 1 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap ap c ap eq 0 1 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap ap eq 0 1 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap f 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap mul 2 ap pwr2 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b
→˓pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap c ap eq 0 1 ap ap add -1 1 ap ap ap b ap mul
→˓2 ap ap b pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap eq 0 ap ap add -1 1 1 ap ap ap b ap mul 2 ap
→˓ap b pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap eq 0 0 1 ap ap ap b ap mul 2 ap ap b pwr2 ap
→˓add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap t 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 ap
→˓ap add -1 1
ap pwr2 1 = ap ap mul 2 1
ap pwr2 1 = 2
ap pwr2 2 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 2
...
ap pwr2 2 = 4
ap pwr2 3 = 8
ap pwr2 4 = 16
ap pwr2 5 = 32
ap pwr2 6 = 64
ap pwr2 7 = 128
ap pwr2 8 = 256
...

2.24 #24. I Combinator

i(x) = x

24 Chapter 2. Condensed Version

Message From Space

i
ap i x0 = x0
ap i 1 = 1
ap i i = i
ap i add = add
ap i ap add 1 = ap add 1
...

2.25 #25. Cons (or Pair)

cons
ap ap ap cons x0 x1 x2 = ap ap x2 x0 x1

2.26 #26. Car (First)

car
ap car ap ap cons x0 x1 = x0
ap car x2 = ap x2 t

2.27 #27. Cdr (Tail)

cdr
ap cdr ap ap cons x0 x1 = x1
ap cdr x2 = ap x2 f

2.25. #25. Cons (or Pair) 25

Message From Space

2.28 #28. Nil (Empty List)

nil
ap nil x0 = t

2.29 #29. Is Nil (Is Empty List)

isnil
ap isnil nil = t
ap isnil ap ap cons x0 x1 = f

2.30 #30. List Construction Syntax

(,)
() = nil
(x0) = ap ap cons x0 nil
(x0 , x1) = ap ap cons x0 ap ap cons x1 nil
(x0 , x1 , x2) = ap ap cons x0 ap ap cons x1 ap ap cons x2 nil
(x0 , x1 , x2 , x5) = ap ap cons x0 ap ap cons x1 ap ap cons x2 ap ap cons x5
→˓nil
...

26 Chapter 2. Condensed Version

Message From Space

2.31 #31. Vector

Alias for cons that looks nice in “vector” usage context.

vec
vec = cons

2.32 #32. Draw

It draws a list of coordinates as dots on a picture.

draw
ap draw () = |picture1|
ap draw (ap ap vec 1 1) = |picture2|
ap draw (ap ap vec 1 2) = |picture3|
ap draw (ap ap vec 2 5) = |picture4|
ap draw (ap ap vec 1 2 , ap ap vec 3 1) = |picture5|
ap draw (ap ap vec 5 3 , ap ap vec 6 3 , ap ap vec 4 4 , ap ap vec 6 4 , ap ap vec 4
→˓5) = |picture6|
...

2.31. #31. Vector 27

Message From Space

2.33 #33. Checkerboard

Draws a checkerboard of the specified size.

checkerboard
checkerboard = ap ap s ap ap b s ap ap c ap ap b c ap ap b ap c ap c ap ap s ap ap b
→˓s ap ap b ap b ap ap s i i lt eq ap ap s mul i nil ap ap s ap ap b s ap ap b ap b
→˓cons ap ap s ap ap b s ap ap b ap b cons ap c div ap c ap ap s ap ap b b ap ap c ap
→˓ap b b add neg ap ap b ap s mul div ap ap c ap ap b b checkerboard ap ap c add 2
ap ap checkerboard 7 0 = |picture1|
ap ap checkerboard 13 0 = |picture2|

2.34 #34. Multiple Draw

Takes a list of lists of 2D-points and returns a list of rendered pictures.

It applies draw function to all items of the list.

multipledraw
ap multipledraw nil = nil
ap multipledraw ap ap cons x0 x1 = ap ap cons ap draw x0 ap multipledraw x1

28 Chapter 2. Condensed Version

Message From Space

2.35 #35. Modulate List

Apply #13. Modulate to a list constructed with #25. Cons (or Pair) or #30. List Construction Syntax.

mod cons
ap mod nil = [nil]
ap mod ap ap cons nil nil = [ap ap cons nil nil]
ap mod ap ap cons 0 nil = [ap ap cons 0 nil]
ap mod ap ap cons 1 2 = [ap ap cons 1 2]
ap mod ap ap cons 1 ap ap cons 2 nil = [ap ap cons 1 ap ap cons 2 nil]
ap mod (1 , 2) = [(1 , 2)]
ap mod (1 , (2 , 3) , 4) = [(1 , (2 , 3) , 4)]
...

2.36 #36. Send (0)

:1678847 is decreasing over time at a rate of 1/3 per second and will reach 0 at the icfp contest main round deadline.

:1678847
ap send (0) = (1 , :1678847)

2.35. #35. Modulate List 29

Message From Space

2.37 #37. Is 0

Function if0 compares the first argument to 0 and picks the second argument if equal, else third.

if0
ap ap ap if0 0 x0 x1 = x0
ap ap ap if0 1 x0 x1 = x1

2.38 #38. Interact

Is a function that takes an “interaction-protocol”, some data (maybe “protocol” dependent), and some pixel. It returns
some new data, and a list of pictures.

Note that during the execution it sometimes uses the send function to communicate with spacecraft.

// list function call notation
f38 protocol (flag, newState, data) = if flag == 0

then (modem newState, multipledraw data)
else interact protocol (modem newState) (send data)

interact protocol state vector = f38 protocol (protocol state vector)

// mathematical function call notation
f38(protocol, (flag, newState, data)) = if flag == 0

then (modem(newState), multipledraw(data))
else interact(protocol, modem(newState), send(data))

interact(protocol, state, vector) = f38(protocol, protocol(state, vector))

mod is defined on cons, nil and numbers only. So modem function seems to be the way to say that it’s argument
consists of numbers and lists only.

So we can assume that newState is always list of list of . . . of numbers.

After experimenting with the galaxy interaction protocol we have found out several good ideas:

1. We can choose any vector to pass it to the interact function. But a convenient way to input this vectors — is
clicking on the image pixel from the previous interact execution result.

3. We need to draw the images passed to multipledraw somehow. A convenient way to do it — is to overlay images
one over another using different colors for different images.

30 Chapter 2. Condensed Version

Message From Space

interact
ap modem x0 = ap dem ap mod x0
ap ap f38 x2 x0 = ap ap ap if0 ap car x0 (ap modem ap car ap cdr x0 , ap
→˓multipledraw ap car ap cdr ap cdr x0) ap ap ap interact x2 ap modem ap car ap cdr
→˓x0 ap send ap car ap cdr ap cdr x0
ap ap ap interact x2 x4 x3 = ap ap f38 x2 ap ap x2 x4 x3

2.39 #39. Interaction Protocol

Start the protocol passing nil as the initial state and (0, 0) as the initial point. Then iterate the protocol passing
new points along with states obtained from the previous execution.

interact
ap ap ap interact x0 nil ap ap vec 0 0 = (x16 , ap multipledraw x64)
ap ap ap interact x0 x16 ap ap vec x1 x2 = (x17 , ap multipledraw x65)
ap ap ap interact x0 x17 ap ap vec x3 x4 = (x18 , ap multipledraw x66)
ap ap ap interact x0 x18 ap ap vec x5 x6 = (x19 , ap multipledraw x67)
...

2.40 #40. Stateless Drawing Protocol

2.39. #39. Interaction Protocol 31

Message From Space

ap interact statelessdraw
ap ap statelessdraw nil x1 = (0 , nil , ((x1)))
statelessdraw = ap ap c ap ap b b ap ap b ap b ap cons 0 ap ap c ap ap b b cons ap ap
→˓c cons nil ap ap c ap ap b cons ap ap c cons nil nil
ap ap ap interact statelessdraw nil ap ap vec 1 0 = (nil , ([1,0]))
ap ap ap interact statelessdraw nil ap ap vec 2 3 = (nil , ([2,3]))
ap ap ap interact statelessdraw nil ap ap vec 4 1 = (nil , ([4,1]))
...

2.41 #41. Stateful Drawing Protocol

It gives us back the variable bound to the draw state, so we can set the next pixel with the next call.

ap interact :67108929
ap ap :67108929 x0 x1 = (0 , ap ap cons x1 x0 , (ap ap cons x1 x0))
:67108929 = ap ap b ap b ap ap s ap ap b ap b ap cons 0 ap ap c ap ap b b cons ap ap
→˓c cons nil ap ap c cons nil ap c cons
ap ap ap interact :67108929 nil ap ap vec 0 0 = ((ap ap vec 0 0) , ([0,0]))
ap ap ap interact :67108929 (ap ap vec 0 0) ap ap vec 2 3 = (x2 , ([0,0;2,3]))
ap ap ap interact :67108929 x2 ap ap vec 1 2 = (x3 , ([0,0;2,3;1,2]))
ap ap ap interact :67108929 x3 ap ap vec 3 2 = (x4 , ([0,0;2,3;1,2;3,2]))
ap ap ap interact :67108929 x4 ap ap vec 4 0 = (x5 , ([0,0;2,3;1,2;3,2;4,0]))
...

32 Chapter 2. Condensed Version

Message From Space

2.42 #42. Galaxy

We believe that this message tells us to run an interaction protocol called galaxy. This protocol is defined in the last
line of the huge message included on this page.

Messages #38 and #39 describe how to run a protocol. As we can see from message #38, a protocol takes a vector and
returns a list of pictures.

Messages #40 and #41 define two simple protocols and demonstrate their behavior during execution.

ap interact galaxy = ...

2.42. #42. Galaxy 33

Message From Space

34 Chapter 2. Condensed Version

CHAPTER

THREE

#1. NUMBERS

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

Download radio transmission recording. It was originally received at ~5 GHz and scaled down to ~500 Hz to make
signal audible for humans.

3.1 Spectrogram

Spectrogram of the recording, rendered with a notebook by Discord user @nya:

3.2 Image

A 2D image created by:

1. Converting low and high frequency spans into black and white squares respectively.

2. Rearranging these squares into a rectangle instead of a single line.

Contributed by Discord user @elventian.

35

https://github.com/zaitsev85/message-from-space/blob/master/source/radio-transmission-recording.rst
https://discord.gg/xvMJbas
https://gist.github.com/nya3jp/5094571c5905783327f35e8df207c8ad#file-spectrogram-ipynb

Message From Space

3.3 Interpretation

Based on the discussions with Discord users @nya, @Kilew, @fryguybob, @aaaa1, @gltronred and @elventian.

Probably the symbols on the left represent numbers and the number of elements on the right is the unary representation
of this number.

Symbols on the left look like a binary encoding that should work for numbers 1..15. Picture says 8, because we have
hard data only up to 8:

36 Chapter 3. #1. Numbers

Message From Space

According to this theory we can speculate that the numbers 9..15 would be represented with these symbols:

Based on this logic the symbols could be extended further like this:

Second transmission seems to support the second conjecture (right picture).

3.3. Interpretation 37

Message From Space

3.4 Code

This Rust code generates decoded images similar to the image included above from WAV files.

Contributed by Discord user @aaaa1.

Example output:

// [dependencies]
// png = "0.16"
// hound = "3.4"

fn main() {
let r = hound::WavReader::open("radio-transmission-recording.wav").unwrap();
let spec = r.spec();
let samples: Vec<i16> = r.into_samples().map(Result::unwrap).collect();

let freq = 600;
let step = 2.0 * std::f32::consts::PI * freq as f32 / spec.sample_rate as f32;
let xys: Vec<(f32, f32)> = samples.iter().copied().enumerate().map(|(i, s)| {

let s = s as f32;
let a = i as f32 * step;
(a.cos() * s, a.sin() * s)

}).collect();

let mut axyz = vec![(0.0, 0.0)];
for (x, y) in xys {

let last = *axyz.last().unwrap();
axyz.push((last.0 + x, last.1 + y));

}

let mut ds: Vec<f32> = axyz.iter().zip(axyz.iter().skip(1000)).map(|(xy1, xy2)| {
let dx = xy1.0 - xy2.0;
let dy = xy1.1 - xy2.1;
dx * dx + dy * dy

}).collect();
let max = *ds.iter().max_by(|x, y| x.partial_cmp(y).unwrap()).unwrap();
ds.iter_mut().for_each(|x| *x /= max);

(continues on next page)

38 Chapter 3. #1. Numbers

Message From Space

(continued from previous page)

let width = 100usize;
let height = 195usize;

let w = std::fs::File::create("res.png").unwrap();
let w = std::io::BufWriter::new(w);
let mut encoder = png::Encoder::new(w, width as u32, height as u32);
encoder.set_color(png::ColorType::Grayscale);
encoder.set_depth(png::BitDepth::Eight);
let mut w = encoder.write_header().unwrap();

let mut data = vec![0u8; width * height];
for (i, cell) in data.iter_mut().enumerate() {

let x = i % width;
let y = i / width / 4;

*cell = (ds.get((x + y * width) * 529 + 132400).copied().unwrap_or(0.0) * 255.
→˓0) as u8;

}
w.write_image_data(&data).unwrap();

}

3.4. Code 39

Message From Space

40 Chapter 3. #1. Numbers

CHAPTER

FOUR

#2. NUMBERS (CONT.)

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

4.1 Image

This image was produced from the second radio transmission using previously contributed code.

4.2 Interpretation

Contributed by Discord user @elventian.

We have enough data to conclude that we’ve found the way of encoding natural numbers by raster monochrome
pictogram framed at the top and left. There is a square semantic region with side N inside the pictogram. Each pixel
of the region corresponds to one bit in the binary notation of the number. Let x and y be column and row numbers in
the range [0 . . . N), then the place value for the cell (x, y) is determined by the following formula:

𝑝𝑙𝑎𝑐𝑒_𝑣𝑎𝑙𝑢𝑒(𝑥, 𝑦) = 2𝑦*𝑁+𝑥

Place values for N up to 5:

41

https://github.com/zaitsev85/message-from-space/blob/master/source/message2.rst
https://discord.gg/xvMJbas

Message From Space

4.3 Decoded

Decoded by Discord users @gltronred and @frictionless.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
...
506 507 508 509 510 511 512 513 514
...
65535 65536 65537
...

4.4 Code

This Python code decodes and annotates numbers on a provided picture.

Contributed by Discord user @pink_snow.

Example output:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 506 507 508 509 510 511 512 513 514 65535 65536 65537

#!/usr/bin/env python
#! nix-shell -i python -p "python38.withPackages(p:[p.pillow])"

import sys
from PIL import Image

class Img:
def __init__(self, fname, zoom):

self._img = Image.open(fname)
self._pixels = self._img.load()
self._zoom = zoom

self.size = self._img.size[0] // zoom, self._img.size[1] // zoom

def __getitem__(self, xy):
xy = xy[0] * self._zoom, xy[1] * self._zoom
try:

c = self._pixels[xy]
except IndexError:

return False
return c[0] + c[1] + c[2] > 382

def dump(self, ix, iy, higlight = set()):
for y in iy:

for x in ix:
if (x,y) in higlight:

print(end="\x1b[40;31m")
print(end=".#"[self[x,y]])
if (x,y) in higlight:

print(end="\x1b[m")
print()

print()

(continues on next page)

42 Chapter 4. #2. Numbers (cont.)

Message From Space

(continued from previous page)

class Svg:
def __init__(self, fname, width, height):

self._f = open(fname, "w")
self._print(

f'<svg xmlns="http://www.w3.org/2000/svg" version="1.1" width="{width*8}"
→˓height="{height*8}">'

)
self._print(f'<rect width="{width*8}" height="{height*8}" style="fill:black"/>

→˓')

def _print(self, *args, **kwargs):
print(*args, **kwargs, file=self._f)

def point(self, x, y):
self._print(

f'<rect x="{x*8}" y="{y*8}" width="7" height="7" style="fill:white"/>'
)

def annotation(self, x, y, w, h, text):
self._print(

f'<rect x="{x*8}" y="{y*8}" width="{w*8}" height="{h*8}" style=
→˓"fill:green;opacity:0.5"/>'

)
style = "paint-order: stroke; fill: white; stroke: black; stroke-width: 2px;

→˓font:24px bold sans;"
self._print(

f'<text x="{x*8+w*4}" y="{y*8+h*4}" dominant-baseline="middle" text-
→˓anchor="middle" fill="white" style="{style}">{text}</text>'

)

def close(self):
self._print("</svg>")
self._f.close()

def decode_number(img, x, y):
if img[x - 1, y - 1] or img[x, y - 1] or img[x - 1, y] or img[x, y]:

return None

Get the size by iterating over top and left edges
size = 0
negative = False
while True:

items = (
img[x + size + 1, y - 1],
img[x + size + 1, y],
img[x - 1, y + size + 1],
img[x, y + size + 1],

)
if items == (False, True, False, True):

size += 1
continue

if items == (False, False, False, False):
break

if items == (False, False, False, True):
negative = True

(continues on next page)

4.4. Code 43

Message From Space

(continued from previous page)

break
return None

if size == 0:
return None

Check that right and bottom edges are empty
for i in range(1,size + 2):

if img[x + size + 1, y+i] or img[x+i, y + size + 1]:
return None

Decode the number
result, d = 0, 1
for iy in range(size):

for ix in range(size):
result += d * img[x + ix + 1, y + iy + 1]
d *= 2

if negative:
result = -result

return (size, size+negative), result

def main(in_fname, out_fname):
img = Img(in_fname, 4)
svg = Svg(out_fname, img.size[0], img.size[1])

for y in range(img.size[1]):
for x in range(img.size[0]):

if img[x, y]:
svg.point(x, y)

for y in range(img.size[1]):
for x in range(img.size[0]):

if (n := decode_number(img, x, y)) is not None:
svg.annotation(x - 0.5, y - 0.5, n[0][0] + 2, n[0][1] + 2, n[1])

svg.close()

main(sys.argv[1], sys.argv[2])

44 Chapter 4. #2. Numbers (cont.)

CHAPTER

FIVE

#3. NEGATIVE NUMBERS

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

5.1 Image

This image was produced from the third radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #2.

4 3 2 1 0

5.2 Interpretation

Contributed by Discord user @pink_snow.

Looks like the bottom left additional pixel is used to indicate negative numbers.

5.3 Decoded

4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17
...
-510 -511 -512 -513 -514
...
-65535 -65536 -65537
...

45

https://github.com/zaitsev85/message-from-space/blob/master/source/message3.rst
https://discord.gg/xvMJbas

Message From Space

5.4 Code

Revised version of the Python code that supports negative numbers is published on the message #2 page.

Contributed by Discord user @pink_snow.

Example output:

4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -510 -511 -512 -513 -514 -65535 -65536 -65537

@pink_snow also provided a Haskell version of the same code.

#! /usr/bin/env nix-shell
-- Usage: ./annotate.hs in-msg.png out-annotated.svg out-decoded.txt
#! nix-shell -i runhaskell -p
#! nix-shell "haskellPackages.ghcWithPackages (pkgs: with pkgs; [JuicyPixels
→˓JuicyPixels-util errors extra groupBy])"
#! nix-shell -I nixpkgs=https://github.com/NixOS/nixpkgs/archive/
→˓5cb5ccb54229efd9a4cd1fccc0f43e0bbed81c5d.tar.gz

import Control.Arrow ((&&&))
import Control.Error.Safe (justZ)
import Control.Monad (forM, forM_, guard)
import Control.Monad.ST (runST)
import Control.Monad.Trans (lift)
import Control.Monad.Trans.Maybe (runMaybeT)
import Data.List (foldl', intercalate, sortOn)
import Data.List.Extra (replace)
import Data.List.GroupBy (groupBy)
import Data.Maybe (catMaybes, fromMaybe)
import Data.Word (Word16)
import Numeric (showHex)
import System.Environment (getArgs)
import qualified Codec.Picture as P
import qualified Codec.Picture.RGBA8 as P8
import qualified Data.Vector.Mutable as V

--
-- Types

type Scale = Int
type Coord = (Int, Int)
type Size = (Int, Int)

data Img = Img (P.Image P.PixelRGBA8) Scale

data Symbol
= SymNumber Integer
| SymModulatedNumber Integer
| SymOperator Integer
| SymVariable Integer
| SymEllipsis
| SymSpecial String
| SymBox Int Int Integer
| SymUnknown

--

(continues on next page)

46 Chapter 5. #3. Negative Numbers

Message From Space

(continued from previous page)

-- Misc functions

range2d :: Int -> Int -> Int -> Int -> [(Int, Int)]
range2d x0 y0 x1 y1 = [(x', y') | y' <- [y0 .. y1], x' <- [x0 .. x1]]

none :: (a -> Bool) -> [a] -> Bool
none = (not .) . any

bitsToInteger :: [Bool] -> Integer
bitsToInteger = fst . foldl' f (0, 1)
where
f (sum, bit) True = (sum + bit, bit*2)
f (sum, bit) False = (sum, bit*2)

groupAcc :: (a -> s) -> (s -> a -> Maybe s) -> [a] -> [(s, [a])]
groupAcc init f = groupAcc1'
where
groupAcc1' [] = []
groupAcc1' (x:xs) = takeGroup (init x) [x] xs

takeGroup state group [] = [(state, reverse group)]
takeGroup state group (y:ys) = case f state y of
Nothing -> (state, reverse group) : groupAcc1' (y:ys)
Just state' -> takeGroup state' (y : group) ys

--
-- Img

imgLoad :: FilePath -> Scale -> IO Img
imgLoad path scale = (\img -> Img img scale) <$> P8.readImageRGBA8 path

imgWidth :: Img -> Int
imgWidth (Img img scale) = P.imageWidth img `div` scale

imgHeight :: Img -> Int
imgHeight (Img img scale) = P.imageHeight img `div` scale

imgPixel :: Img -> Coord -> Bool
imgPixel (Img img scale) (x, y) = True

&& x' >= 0 && y' >= 0
&& x' < P.imageWidth img && y' < P.imageHeight img
&& fromIntegral r + fromIntegral g + fromIntegral b > (0::Word16)
where
(x', y') = (x * scale, y * scale)
P.PixelRGBA8 r g b _ = P.pixelAt img x' y'

imgShow :: Img -> [Int] -> [Int] -> String
imgShow img xs ys = unlines $ map showLine ys
where showLine y = map (\x -> if imgPixel img (x, y) then '#' else '.') xs

imgShowFull :: Img -> String
imgShowFull img = imgShow img [0 .. imgWidth img - 1] [0 .. imgHeight img - 1]

instance Show Img where
show = imgShowFull

imgAllPixels :: Img -> [Coord]
(continues on next page)

5.4. Code 47

Message From Space

(continued from previous page)

imgAllPixels img = range2d 0 0 (imgWidth img - 1) (imgHeight img - 1)

--
-- Symbol decoder

symDecode :: Img -> Coord -> Size -> Symbol
symDecode img (x, y) (w, h)

| checkSymbol img symGalaxy (x, y) = SymSpecial "galaxy"
| checkSymbol img symHuman (x, y) = SymSpecial "human"
| checkSymbol img symSpacecraft (x, y) = SymSpecial "spacecraft"
| isNonNegativeNumber = SymNumber value
| isNegativeNumber = SymNumber (-value)
| isModulatedNumber = SymModulatedNumber modulatedValue
| isVariable = SymVariable varValue
| isOperator = SymOperator value
| isBox = SymBox (w-2) (h-2) boxValue
| isEllipsis = SymEllipsis
| checkSymbol img symOpenPar (x-1, y-1) = SymSpecial "("
| checkSymbol img symClosePar (x-1, y-1) = SymSpecial ")"
| checkSymbol img symPipe (x-1, y-1) = SymSpecial ","
| otherwise = SymUnknown
where
size = w

px (x', y') = imgPixel img (x + x', y + y')

isNonNegativeNumber = True
&& w == h
&& not (px (0, 0))

isNegativeNumber = True
&& size >= 2
&& w + 1 == h
&& not (px (0, 0))
&& px (0, size)
&& none px [(x', size) | x' <- [1 .. size-1]] -- bottom + 1 is empty

isOperator = True
&& w == h
&& px (0, 0)

isVariable = True
&& size >= 4
&& w == h
&& size >= 4
&& px (1, 1)
&& all px [(x', size-1) | x' <- [0 .. size-1]] -- bottom is full
&& all px [(size-1, y') | y' <- [0 .. size-1]] -- right is full
&& none px [(x', 1) | x' <- [2 .. size-2]] -- top + 1 is empty
&& none px [(1, y') | y' <- [2 .. size-2]] -- left + 1 is empty

isBox = True
&& not (px (0, 0))
&& not (px (w-1, 0))
&& not (px (0, h-1))
&& not (px (w-1, h-1))
&& all px [(x', h-1) | x' <- [1 .. w-2]] -- bottom is full

(continues on next page)

48 Chapter 5. #3. Negative Numbers

Message From Space

(continued from previous page)

&& all px [(w-1, y') | y' <- [1 .. h-2]] -- right is full

isEllipsis = checkSymbol img symEllipsis (x-1, y-1)

isModulatedNonNeg = checkSymbol img symModulatedNonNeg (x, y)

isModulatedNeg = checkSymbol img symModulatedNeg (x, y)

isModulatedNumber = isModulatedNonNeg || isModulatedNeg

value = bitsToInteger $ map px $ range2d 1 1 (size-1) (size-1)

varValue = bitsToInteger $ map (not . px) $ range2d 2 2 (size-2) (size-2)

boxValue = bitsToInteger $ map px $ range2d 1 1 (w-2) (h-2)

modulatedSign = if isModulatedNonNeg then 1 else (-1)

modulatedNibbleCount = length $ takeWhile (\x -> px (x, 0)) [2 ..]

modulatedBits = map (\x -> px (x, 0)) $
take (4 * modulatedNibbleCount) [(3 + modulatedNibbleCount) ..]

modulatedValue = modulatedSign * (foldl (\acc bit -> (2 * acc) + if bit then 1
→˓else 0) 0 modulatedBits)

symDetectAll :: Img -> [(Coord, Size)]
symDetectAll img = runST $ do
vec <- V.replicate (width * height) False
fmap catMaybes $ forM validRange $ \(x, y) -> runMaybeT $ do
guard =<< not <$> V.read vec (idx (x, y))
(w, h) <- justZ $ symDetectSingle img (x, y)
lift $ forM_ (range2d x y (x+w-1) (y+h-1)) $ flip (V.write vec) True . idx
return ((x, y), (w, h))

where
(width, height) = (imgWidth &&& imgHeight) img
validRange = range2d 2 2 (width - 3) (height - 3)
idx (x, y) = x + y * width

symDetectSingle :: Img -> Coord -> Maybe Size
symDetectSingle img (x, y)

| checkSymbol img symModulatedNonNeg (x, y) = Just (modulatedWidth, 2)
| checkSymbol img symModulatedNeg (x, y) = Just (modulatedWidth, 2)
| px 1 0 && px 0 1 && nothingBelow = Just (gridWidth + 1, gridHeight + 1)
| not (px 0 0) && px 1 0 && px 0 1 && isBox = Just (gridWidth + 2, gridHeight + 2)
| checkSymbol img symEllipsis (x-1, y-1) = Just (7, 1)
| checkSymbol img symOpenPar (x-1, y-1) = Just (3, 5)
| checkSymbol img symClosePar (x-1, y-1) = Just (3, 5)
| checkSymbol img symPipe (x-1, y-1) = Just (2, 5)
| checkSymbol img symGalaxy (x, y) = Just (7, 7)
| checkSymbol img symHuman (x, y) = Just (7, 7)
| checkSymbol img symSpacecraft (x, y) = Just (7, 7)
| otherwise = Nothing
where
px x' y' = imgPixel img (x + x', y + y')
gridWidth = length $ takeWhile (flip px 0) [1 ..]
gridHeight = length $ takeWhile (px 0) [1 ..]

(continues on next page)

5.4. Code 49

Message From Space

(continued from previous page)

modulatedWidth = length $ takeWhile (\x -> px x 0 || px x 1) [0 ..]
nothingBelow = none (\x -> px x (gridHeight+1)) [0..gridWidth]
isBox = all (\i -> px (gridWidth+1) i) [1..gridHeight-1]

symEllipsis :: [[Bool]]
symEllipsis = map (map (=='#'))
["........."
, ".#.#.#.#."
, "........."
]

symModulatedNonNeg :: [[Bool]]
symModulatedNonNeg = map (map (=='#'))
[".#"
, "#."
, "."
]

symModulatedNeg :: [[Bool]]
symModulatedNeg = map (map (=='#'))

["#."
, ".#"
]

symOpenPar :: [[Bool]]
symOpenPar = map (map (=='#'))
["....."
, "...#."
, "..##."
, ".###."
, "..##."
, "...#."
, "....."
]

symClosePar :: [[Bool]]
symClosePar = map (map (=='#'))
["....."
, ".#.."
, ".##."
, ".###"
, ".##."
, ".#.."
, "...."
]

symPipe :: [[Bool]]
symPipe = map (map (=='#'))

["...."
, ".##."
, ".##."
, ".##."
, ".##."
, ".##."
, "...."
]

(continues on next page)

50 Chapter 5. #3. Negative Numbers

Message From Space

(continued from previous page)

symGalaxy :: [[Bool]]
symGalaxy = map (map (=='#'))
["..###.."
, ".....#."
, ".###..#"
, "#.#.#.#"
, "#..###."
, " #....."
, "..###.."
]

symHuman :: [[Bool]]
symHuman = map (map (=='#'))

["..#.#.."
, "..#.#.."
, "..###.."
, "..###.."
, "..###.."
, "#######"
, "...#..."
]

symSpacecraft :: [[Bool]]
symSpacecraft = map (map (=='#'))

["...#..."
, ".#####."
, ".#...#."
, "##...##"
, "##.#.##"
, ".#####."
, "#.#.#.#"
]

checkLine :: Img -> [Bool] -> Coord -> Bool
checkLine _ [] _ = True
checkLine img (h:t) (x, y) = (imgPixel img (x, y) == h) && checkLine img t (x+1, y)

checkSymbol :: Img -> [[Bool]] -> Coord -> Bool
checkSymbol _ [] _ = True
checkSymbol img (h:t) (x, y) = checkLine img h (x, y) && checkSymbol img t (x, y+1)

--
-- svg

svg :: Img -> [(Coord, Size, String, String)] -> String
svg img annotations =
concat (
svgHead img ++
svgImgPoints img ++
concatMap (\(coord, size, text, color) -> svgAnnotation coord size text color)

→˓annotations ++
["</svg>"]

)

svgHead :: Img -> [String]
svgHead img = [

"<svg xmlns='http://www.w3.org/2000/svg' version='1.1' width='",
(continues on next page)

5.4. Code 51

Message From Space

(continued from previous page)

show $ 1 + imgWidth img * 8,
"' height='",
show $ 1 + imgHeight img * 8,
"'>\n",
"<rect width='100%' height='100%' style='fill:black'/>\n"

]

svgPoint :: Coord -> Bool -> [String]
svgPoint (x, y) value = [

"<rect x='", show (1 + x*8),
"' y='", show (1 + y*8),
"' width='7' height='7' style='fill:",
if value then "white" else "#333333",
"'/>\n"

]

svgImgPoints :: Img -> [String]
svgImgPoints img =

concatMap (\coord -> svgPoint coord (imgPixel img coord)) $ imgAllPixels img

svgAnnotation :: Coord -> Size -> String -> String -> [String]
svgAnnotation (x, y) (w, h) text color = [

"<rect x='", show (1 + x*8 - 6),
"' y='", show (1 + y*8 - 6),
"' width='", show (w*8 + 11),
"' height='", show (h*8 + 11),
"' style='fill:", color, ";opacity:0.5'/>\n",

"<text x='", show (1 + x*8 + w*4),
"' y='", show (1 + y*8 + h*4),
"' dominant-baseline='middle' text-anchor='middle' fill='white' style='",
"paint-order: stroke; fill: white; stroke: black; stroke-width: 2px; font:24px

→˓bold sans;",
"'>", text', "</text>\n"

]
where text' = replace "<" "<" text

--
-- Main

annotateImg :: Img -> String
annotateImg img = id

$ svg img
$ map (symRepr' img)
$ symDetectAll img

decodeImg :: Img -> String
decodeImg img = id

$ unlines
$ map (intercalate " ") -- join groups
$ map (map (intercalate " ")) -- join items inside each group
$ map (map (map (\(_, _, text, _) -> text)))
$ map (groupBy (\a b -> xRight a >= xLeft b - 2)) -- split by horisontal groups
$ splitByLines
$ map (symRepr' img)
$ symDetectAll img

where
(continues on next page)

52 Chapter 5. #3. Negative Numbers

Message From Space

(continued from previous page)

xLeft ((x, _), _, _, _) = x
xRight ((x, _), (w, _), _, _) = x + w

splitByLines :: [(Coord, Size, a, b)] -> [[(Coord, Size, a, b)]]
splitByLines = id

. map (sortOn (\((x, _), _, _, _) -> x))

. map concat

. map (map snd . snd) -- drop accumulators from both groupAcc's

. groupAcc fst (\s x -> addRanges s (fst x))

. groupAcc yRange (\s x -> addRanges s (yRange x))
where
yRange ((_, y), (_, h), _, _) = (y, y+h)
addRanges (a0, a1) (b0, b1)

| b0 <= a0 && a0 <= b1 = Just (b0, max a1 b1)
| a0 <= b0 && b0 <= a1 = Just (a0, max a1 b1)
| otherwise = Nothing

symRepr :: Symbol -> (String, String)
symRepr SymUnknown = ("?", "gray")
symRepr (SymSpecial x) = (x, "gray")
symRepr SymEllipsis = ("...", "gray")
symRepr (SymNumber val) = (show val, "green")
symRepr (SymModulatedNumber val) = ("[" ++ show val ++ "]", "purple")
symRepr (SymOperator val) = (text, "yellow")
where
text = fromMaybe (':' : show val) $ lookup val ops
ops = [(0, "ap")

, (12, "=")
-- constants
, (2, "t")
, (8, "f")
-- unary operators
, (401, "dec")
, (417, "inc")
, (170, "mod")
, (341, "dem")
-- binary operators
, (40, "div")
, (146, "mul")
, (365, "add")
-- comparisons
, (416, "lt")
, (448, "eq")
]

symRepr (SymBox w h val) = ('#' : show w ++ ":" ++ show h ++ ":" ++ showHex val "",
→˓"orange")
symRepr (SymVariable val) = ('x' : show val, "blue")

symRepr' :: Img -> (Coord, Size) -> (Coord, Size, String, String)
symRepr' img (coord, size) =

(coord, size, text, color)
where (text, color) = symRepr $ symDecode img coord size

main :: IO ()
main = do

[fnameIn, fnameSvg, fnameTxt] <- getArgs
img <- imgLoad fnameIn 4

(continues on next page)

5.4. Code 53

Message From Space

(continued from previous page)

writeFile fnameSvg $ annotateImg img
writeFile fnameTxt $ decodeImg img

54 Chapter 5. #3. Negative Numbers

CHAPTER

SIX

#4. EQUALITY

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

6.1 Image

This image was produced from the fourth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #2.

55

https://github.com/zaitsev85/message-from-space/blob/master/source/message4.rst
https://discord.gg/xvMJbas

Message From Space

0 0

1 1

2 2

3 3

10 10

11 11

-1 -1

-2 -2

56 Chapter 6. #4. Equality

Message From Space

6.2 Interpretation

The new glyph is probably an equality sign, but there is not enough information be sure. Can be a less-than sign, any
operation that preserves its operand, etc.

6.3 Decoded

=
0 = 0
1 = 1
2 = 2
3 = 3
...
10 = 10
11 = 11
...
-1 = -1
-2 = -2
...

6.4 Code

Revised version of the Haskell code that supports the = glyph is published on the message #3 page.

Contributed by Discord user @pink_snow.

Example output:

6.2. Interpretation 57

Message From Space

=

…

…

…

0

1

2

3

10

11

-1

-2

=

=

=

=

=

=

=

=

0

1

-1

2

3

10

11

-2

58 Chapter 6. #4. Equality

CHAPTER

SEVEN

#5. SUCCESSOR

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

7.1 Image

This image was produced from the fifth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

59

https://github.com/zaitsev85/message-from-space/blob/master/source/message5.rst
https://discord.gg/xvMJbas

Message From Space

…

…

…

0

1

2

3

300

301

-1

-2

-3

=

=

=

=

=

=

=

=

=

1

2

0

3

4

-1

-2

301

302

60 Chapter 7. #5. Successor

Message From Space

7.2 Interpretation

There are two new symbols in this message, which are used inseparably from each other. It seems that a combination
of them represents an increment operation.

The three-pixel symbol could be the application operator, and the other complicated one is the successor function. (by
@nore)

The inner part of the complicated symbol is number 1. (by @gltronred) As a consequence of this observation, this
symbol could contain any number: (image by @elventian)

The numerical value of new symbols are 0 and 417.

7.3 Decoded

inc
ap inc 0 = 1
ap inc 1 = 2
ap inc 2 = 3
ap inc 3 = 4
...
ap inc 300 = 301
ap inc 301 = 302
...
ap inc -1 = 0
ap inc -2 = -1
ap inc -3 = -2
...

7.2. Interpretation 61

Message From Space

7.4 Code

Revised version of the Haskell code that supports the ap and inc glyphs is published on the message #3 page.

Contributed by Discord users @pink_snow and @fryguybob.

Example output:

62 Chapter 7. #5. Successor

Message From Space

inc

ap
inc

0 = 1

ap
inc

1 = 2

ap
inc 2 = 3

ap
inc 3 = 4

...

ap
inc 300 = 301

ap
inc 301 = 302

...

ap
inc -1 = 0

ap
inc -2 = -1

ap
inc -3 = -2

...

7.4. Code 63

Message From Space

64 Chapter 7. #5. Successor

CHAPTER

EIGHT

#6. PREDECESSOR

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

8.1 Image

This image was produced from the sixth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

65

https://github.com/zaitsev85/message-from-space/blob/master/source/message6.rst
https://discord.gg/xvMJbas

Message From Space

…

…

…

401

id

id

id

id

id

id

id

id

401

401

401

401

401

401

401

401

1

2

3

4

1024

0

-1

-2

==

==

==

==

==

==

==

==

0

-1

-2

1

2

3

-3

1023

66 Chapter 8. #6. Predecessor

Message From Space

8.2 Interpretation

Contributed by Discord user @elventian.

Just like in #5. Successor, there are two unknown symbols in this message, together they represent a decrement
operation.

The three-pixel symbol is identical to increment operation, and the other complicated one looks similar to increment,
but rejects our theory about internal structure of the symbol, so it’s just an arbitrary patterns.

8.3 Decoded

dec
ap dec 1 = 0
ap dec 2 = 1
ap dec 3 = 2
ap dec 4 = 3
...
ap dec 1024 = 1023
...
ap dec 0 = -1
ap dec -1 = -2
ap dec -2 = -3
...

8.4 Code

Revised version of the Haskell code that supports the dec glyph is published on the message #3 page.

Contributed by Discord users @pink_snow and @fryguybob.

Example output:

8.2. Interpretation 67

Message From Space

dec

ap
dec

1 = 0

ap
dec 2 = 1

ap
dec 3 = 2

ap
dec 4 = 3

...

ap
dec 1024

=
1023

...

ap
dec

0 = -1

ap
dec -1 = -2

ap
dec -2 = -3

...

68 Chapter 8. #6. Predecessor

CHAPTER

NINE

#7. SUM

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

9.1 Image

This image was produced from the seventh radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

69

https://github.com/zaitsev85/message-from-space/blob/master/source/message7.rst
https://discord.gg/xvMJbas

Message From Space

…

365

id

id

id

id

id

id

id

id

id

id

365

365

365

365

365

1

2

0

2

3

2

1

1

3

5

==

==

==

==

==

1

3

3

5

8

9.2 Interpretation

Contributed by Discord user @elventian.

This image shows all known operators and functions:

70 Chapter 9. #7. Sum

Message From Space

Count of operand symbols before function symbol defines how many operands the function expects. if this is correct,
we need to do the following to calculate sum of three numbers:

9.3 Decoded

add
ap ap add 1 2 = 3
ap ap add 2 1 = 3
ap ap add 0 1 = 1
ap ap add 2 3 = 5
ap ap add 3 5 = 8
...

9.3. Decoded 71

Message From Space

9.4 Code

Revised version of the Haskell code that supports the add glyph is published on the message #3 page.

Contributed by Discord users @pink_snow and @fryguybob.

Example output:

add

ap ap
add

1 2 = 3

ap ap
add 2 1 = 3

ap ap
add

0 1 = 1

ap ap
add 2 3 = 5

ap ap
add 3 5 = 8

...

72 Chapter 9. #7. Sum

CHAPTER

TEN

#8. VARIABLES

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

10.1 Image

This image was produced from the eighth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

73

https://github.com/zaitsev85/message-from-space/blob/master/source/message8.rst
https://discord.gg/xvMJbas

Message From Space

0880618601628697932479042886760326596316808865875540582477097049046083327205882920899827875721507572155786942986664472354945382226

:501 :485 :65193 :65161 :64745
...

ap ap
add

0
:501 = :501

ap ap
add

0
:485 = :485

ap ap
add

0
:65193

=
:65193

...

ap ap
add :501

0 = :501

ap ap
add :485

0 = :485

ap ap
add :65193

0 =
:65193

...

ap ap
add :501 :485 = ap ap

add :485 :501

...

10.2 Interpretation

Contributed by Discord user @FiddlesticksMcGee.

Appears to designate a syntax for declaring variables.

Variables have a border of high values framing a negative of numbers as previously encoded in #1. Numbers.

74 Chapter 10. #8. Variables

Message From Space

10.3 Decoded

x0 x1 x2 x3 x4 ...
ap ap add 0 x0 = x0
ap ap add 0 x1 = x1
ap ap add 0 x2 = x2
...
ap ap add x0 0 = x0
ap ap add x1 0 = x1
ap ap add x2 0 = x2
...
ap ap add x0 x1 = ap ap add x1 x0
...

10.4 Code

Revised version of the Haskell code that supports the variable glyphs is published on the message #3 page.

Contributed by Discord users @pink_snow and @fryguybob.

Example output:

10.3. Decoded 75

Message From Space

x0 x1 x2 x3 x4
...

ap ap
add

0
x0 = x0

ap ap
add

0
x1 = x1

ap ap
add

0
x2

=
x2

...

ap ap
add x0

0 = x0

ap ap
add x1

0 = x1

ap ap
add x2

0 =
x2

...

ap ap
add x0 x1 = ap ap

add x1 x0

...

76 Chapter 10. #8. Variables

CHAPTER

ELEVEN

#9. PRODUCT

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

11.1 Image

This image was produced from the ninth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

77

https://github.com/zaitsev85/message-from-space/blob/master/source/message9.rst
https://discord.gg/xvMJbas

Message From Space

:146

ap ap
:146 4 2 = 8

ap ap
:146 3 4 = 12

ap ap
:146 3 -2 = -6

ap ap
:146 x0 x1 = ap ap

:146 x1 x0

ap ap
:146 x0

0 = 0

ap ap
:146 x0

1 = x0

...

11.2 Interpretation

Definition of the new glyph is consistent with the definition of multiplication.

11.3 Decoded

mul
ap ap mul 4 2 = 8
ap ap mul 3 4 = 12
ap ap mul 3 -2 = -6
ap ap mul x0 x1 = ap ap mul x1 x0
ap ap mul x0 0 = 0
ap ap mul x0 1 = x0
...

78 Chapter 11. #9. Product

Message From Space

11.4 Code

Revised version of the Haskell code that supports the mul glyph is published on the message #3 page.

Contributed by Discord users @pink_snow and @fryguybob.

Example output:

mul

ap ap
mul 4 2 = 8

ap ap
mul 3 4 = 12

ap ap
mul 3 -2 = -6

ap ap
mul x0 x1 = ap ap

mul x1 x0

ap ap
mul x0

0 = 0

ap ap
mul x0

1 = x0

...

11.4. Code 79

Message From Space

80 Chapter 11. #9. Product

CHAPTER

TWELVE

#10. INTEGER DIVISION

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

12.1 Image

This image was produced from the tenth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

81

https://github.com/zaitsev85/message-from-space/blob/master/source/message10.rst
https://discord.gg/xvMJbas

Message From Space

:40

ap ap
:40 4 2 = 2

ap ap
:40 4 3 = 1

ap ap
:40 4 4 = 1

ap ap
:40 4 5 = 0

ap ap
:40 5 2 = 2

ap ap
:40 6 -2 = -3

ap ap
:40 5 -3 = -1

ap ap
:40 -5 3 = -1

ap ap
:40 -5 -3 = 1

ap ap
:40 x0

1 = x0

...

82 Chapter 12. #10. Integer Division

Message From Space

12.2 Interpretation

The new operator is consistent with integer division which rounds toward zero.

12.3 Decoded

div
ap ap div 4 2 = 2
ap ap div 4 3 = 1
ap ap div 4 4 = 1
ap ap div 4 5 = 0
ap ap div 5 2 = 2
ap ap div 6 -2 = -3
ap ap div 5 -3 = -1
ap ap div -5 3 = -1
ap ap div -5 -3 = 1
ap ap div x0 1 = x0
...

12.4 Code

The Haskell code has been revised to decode the integer division operator.

diff --git a/source/annotate.hs b/source/annotate.hs
index 6a1e50e..21c4c11 100755
--- a/source/annotate.hs
+++ b/source/annotate.hs
@@ -273,6 +273,7 @@ symRepr (SymNumber val) = (show val, "green")
symRepr (SymOperator val) = (t val, "yellow")
where t 0 = "ap"

t 12 = "="
+ t 40 = "div"

t 146 = "mul"
t 401 = "dec"
t 417 = "inc"

Example output:

12.2. Interpretation 83

Message From Space

div

ap ap
div 4 2 = 2

ap ap
div 4 3 = 1

ap ap
div 4 4 = 1

ap ap
div 4 5 = 0

ap ap
div 5 2 = 2

ap ap
div 6 -2 = -3

ap ap
div 5 -3 = -1

ap ap
div -5 3 = -1

ap ap
div -5 -3 = 1

ap ap
div x0

1 = x0

...

84 Chapter 12. #10. Integer Division

CHAPTER

THIRTEEN

#11. EQUALITY AND BOOLEANS

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

13.1 Image

This image was produced from the eleventh radio transmission using previously contributed code.

85

https://github.com/zaitsev85/message-from-space/blob/master/source/message11.rst
https://discord.gg/xvMJbas

Message From Space

This partly annotated version of the image was made using code from message #3.

86 Chapter 13. #11. Equality and Booleans

Message From Space

:448

ap ap
:448 x0 x0 = :2

ap ap
:448

0
-2 = :8

ap ap
:448

0 -1 = :8

ap ap
:448

0 0 = :2

ap ap
:448

0 1 = :8

ap ap
:448

0 2 = :8

...

ap ap
:448

1 -1 = :8

ap ap
:448

1 0 = :8

ap ap
:448

1 1 = :2

ap ap
:448

1 2 = :8

ap ap
:448

1 3 = :8

...

ap ap
:448 2 0 = :8

ap ap
:448 2 1 = :8

ap ap
:448 2 2 = :2

ap ap
:448 2 3 = :8

ap ap
:448 2 4 = :8

...

ap ap
:448 19 20 = :8

ap ap
:448 20 20 = :2

ap ap
:448 21 20 = :8

...

ap ap
:448 -19 -20

= :8

ap ap
:448 -20 -20

= :2

ap ap
:448 -21 -20

= :8

...

13.1. Image 87

Message From Space

13.2 Interpretation

Operator 448 is consistent with checking whether the first number equal than the second number. We will denote it as
eq.

Operator 2 is consistent with true and operator 8 is consistent with false. We will denote it as t and f respectively.

13.3 Decoded

eq
ap ap eq x0 x0 = t
ap ap eq 0 -2 = f
ap ap eq 0 -1 = f
ap ap eq 0 0 = t
ap ap eq 0 1 = f
ap ap eq 0 2 = f
...
ap ap eq 1 -1 = f
ap ap eq 1 0 = f
ap ap eq 1 1 = t
ap ap eq 1 2 = f
ap ap eq 1 3 = f
...
ap ap eq 2 0 = f
ap ap eq 2 1 = f
ap ap eq 2 2 = t
ap ap eq 2 3 = f
ap ap eq 2 4 = f
...
ap ap eq 19 20 = f
ap ap eq 20 20 = t
ap ap eq 21 20 = f
...
ap ap eq -19 -20 = f
ap ap eq -20 -20 = t
ap ap eq -21 -20 = f
...

88 Chapter 13. #11. Equality and Booleans

Message From Space

13.4 Code

The Haskell code has been revised to decode new glyphs.

Example output:

13.4. Code 89

Message From Space

eq

ap ap
eq x0 x0 = t

ap ap
eq

0
-2 = f

ap ap
eq

0 -1 = f

ap ap
eq

0 0 = t

ap ap
eq

0 1 = f

ap ap
eq

0 2 = f

...

ap ap
eq

1 -1 = f

ap ap
eq

1 0 = f

ap ap
eq

1 1 = t

ap ap
eq

1 2 = f

ap ap
eq

1 3 = f

...

ap ap
eq 2 0 = f

ap ap
eq 2 1 = f

ap ap
eq 2 2 = t

ap ap
eq 2 3 = f

ap ap
eq 2 4 = f

...

ap ap
eq 19 20 = f

ap ap
eq 20 20 = t

ap ap
eq 21 20 = f

...

ap ap
eq -19 -20

= f

ap ap
eq -20 -20

= t

ap ap
eq -21 -20

= f

...

90 Chapter 13. #11. Equality and Booleans

CHAPTER

FOURTEEN

#12. STRICT LESS-THAN

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

14.1 Image

This image was produced from the twelfth radio transmission using previously contributed code.

91

https://github.com/zaitsev85/message-from-space/blob/master/source/message12.rst
https://discord.gg/xvMJbas

Message From Space

This partly annotated version of the image was made using code from message #3.

92 Chapter 14. #12. Strict Less-Than

Message From Space

:416

ap ap
:416

0 -1 = f

ap ap
:416

0 0 = f

ap ap
:416

0 1 = t

ap ap
:416

0 2 = t

...

ap ap
:416

1 0 = f

ap ap
:416

1 1 = f

ap ap
:416

1 2 = t

ap ap
:416

1 3 = t

...

ap ap
:416 2 1 = f

ap ap
:416 2 2 = f

ap ap
:416 2 3 = t

ap ap
:416 2 4 = t

...

ap ap
:416 19 20 = t

ap ap
:416 20 20 = f

ap ap
:416 21 20 = f

...

ap ap
:416 -19 -20

= f

ap ap
:416 -20 -20

= f

ap ap
:416 -21 -20

= t

...

14.1. Image 93

Message From Space

14.2 Interpretation

Operator 416 is consistent with checking whether the first number is strictly less than the second number. We will
denote it as lt.

14.3 Decoded

lt
ap ap lt 0 -1 = f
ap ap lt 0 0 = f
ap ap lt 0 1 = t
ap ap lt 0 2 = t
...
ap ap lt 1 0 = f
ap ap lt 1 1 = f
ap ap lt 1 2 = t
ap ap lt 1 3 = t
...
ap ap lt 2 1 = f
ap ap lt 2 2 = f
ap ap lt 2 3 = t
ap ap lt 2 4 = t
...
ap ap lt 19 20 = t
ap ap lt 20 20 = f
ap ap lt 21 20 = f
...
ap ap lt -19 -20 = f
ap ap lt -20 -20 = f
ap ap lt -21 -20 = t
...

14.4 Code

The Haskell code has been revised to decode new glyphs.

Example output:

94 Chapter 14. #12. Strict Less-Than

Message From Space

lt

ap ap
lt

0 -1 = f

ap ap
lt

0 0 = f

ap ap
lt

0 1 = t

ap ap
lt

0 2 = t

...

ap ap
lt

1 0 = f

ap ap
lt

1 1 = f

ap ap
lt

1 2 = t

ap ap
lt

1 3 = t

...

ap ap
lt 2 1 = f

ap ap
lt 2 2 = f

ap ap
lt 2 3 = t

ap ap
lt 2 4 = t

...

ap ap
lt 19 20 = t

ap ap
lt 20 20 = f

ap ap
lt 21 20 = f

...

ap ap
lt -19 -20

= f

ap ap
lt -20 -20

= f

ap ap
lt -21 -20

= t

...

14.4. Code 95

Message From Space

96 Chapter 14. #12. Strict Less-Than

CHAPTER

FIFTEEN

#13. MODULATE

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

15.1 Image

This image was produced from the thirteenth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

97

https://github.com/zaitsev85/message-from-space/blob/master/source/message13.rst
https://discord.gg/xvMJbas

Message From Space

:170

ap
:170

0 = 0

ap
:170

1 = ? 0

ap
:170 -1 = 0 0

ap
:170 2 = ? 0

ap
:170 -2 = 0 0

...

ap
:170 16 = ? 0

ap
:170 -16

= ? 0

...

ap
:170 255 = ? ?

ap
:170 -255

= ? ?

ap
:170 256 = ? 0

ap
:170 -256

= ? 0

...

98 Chapter 15. #13. Modulate

Message From Space

15.2 Interpretation

The operator defined in this message, mod, is for converting numbers from a grid form into a linear-encoded form.
The linear encoding appears to be a type of Variable-length encoding, with the following form:

• Bits 0..1 define a positive or negative number (and signal width) via a high/low or low/high signal change:

– 01: positive number

– 10: negative number

• Bits 2..(n+2) define the width of the following binary-encoded number via a unary-encoded number of length n
composed of high signals ending with a low signal. The number width (in bits) is four times the unary encoding
(i.e. 4 * n):

– 0: 0 [i.e. the number zero]

– 10: 4-bit number [i.e. 1-15]

– 110: 8-bit number [i.e. 1-255]

– 1110: 12-bit number [i.e. 1-4095]

– . . .

• The remaining bits, i.e. (n + 3)..(n + 3 + 4*n - 1), determine the number itself, in most-significant-bit first binary
notation. Using the examples from this message:

– 0001: 1

– 00010000: 16

– 000100000000: 256

– . . .

With this encoding, the number zero only requires three bits (i.e. 010), but arbitrarily large numbers can also be
represented.

15.3 Decoded

mod
ap mod 0 = [0]
ap mod 1 = [1]
ap mod -1 = [-1]
ap mod 2 = [2]
ap mod -2 = [-2]
...
ap mod 16 = [16]
ap mod -16 = [-16]
...
ap mod 255 = [255]
ap mod -255 = [-255]
ap mod 256 = [256]
ap mod -256 = [-256]
...

15.2. Interpretation 99

https://en.wikipedia.org/wiki/Variable-length_quantity

Message From Space

15.4 Code

The Haskell code has been revised to decode new glyphs.

Example output:

100 Chapter 15. #13. Modulate

Message From Space

mod

ap
mod

0 = [0]

ap
mod

1 = [1]

ap
mod -1 = [-1]

ap
mod 2 = [2]

ap
mod -2 = [-2]

...

ap
mod 16 = [16]

ap
mod -16

= [-16]

...

ap
mod 255 = [255]

ap
mod -255

= [-255]

ap
mod 256 = [256]

ap
mod -256

= [-256]

...

15.4. Code 101

Message From Space

102 Chapter 15. #13. Modulate

CHAPTER

SIXTEEN

#14. DEMODULATE

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

16.1 Image

This image was produced from the fourteenth radio transmission using previously contributed code.

This partly annotated version of the image was made using code from message #3.

:341

ap
:341

ap
:170 x0 = x0

ap
:170

ap
:341 x0 = x0

103

https://github.com/zaitsev85/message-from-space/blob/master/source/message14.rst
https://discord.gg/xvMJbas

Message From Space

16.2 Interpretation

This appears to define an inverse operator to that from #13. Modulate, demonstrating that :341 (dem) is the inverse
of :170 (mod), and vice versa. This suggests that :341, when applied to a linear-encoded number, will create a
grid-encoded number.

The behaviour of mod when applied to a linear number, or dem when applied to a grid number, is not defined.

16.3 Decoded

dem
ap dem ap mod x0 = x0
ap mod ap dem x0 = x0

16.4 Code

The Haskell code has been revised to decode new glyphs.

Example output:

dem

ap
dem

ap
mod x0 = x0

ap
mod

ap
dem x0 = x0

104 Chapter 16. #14. Demodulate

CHAPTER

SEVENTEEN

#15. SEND

Note: If you have any ideas or enhancements for this page, please edit it on GitHub!

Following documentation is a cooperative result combined from our Discord chat and numerous pull requests. Thanks
to everyone who helped!

17.1 Image

This image was produced from the fifteenth radio transmission using previously contributed code.

105

https://github.com/zaitsev85/message-from-space/blob/master/source/message15.rst
https://discord.gg/xvMJbas

Message From Space

This partly annotated version of the image was made using code from message #3.

106 Chapter 17. #15. Send

Message From Space

:174

...

1

:64136?

?

0
0
0
0

?

0
0
0
0

??
?

:22298023604371552426870186540012804662888448?:63624 :63624 1 :14 :14 :14

ap
:174 x0 = x1

x0
1

? :64136? ?
?

?

? ? ap
:170 x0

1

?
0 0

:64136?
0 0 ?0 0

?
?

x0
1

? :64136? ?
?

?

x1
1

? :64136? ?
?

?

ap
:170 x1

? ? 1

?
0 0

:64136?
0 0 ?0 0

?
?

x1
1

? :64136? ?
?

?

17.1. Image 107

Message From Space

17.2 Interpretation

Todo: Add an interpretation for the fifteenth message.

17.3 Decoded

send

ap send x0 = x1

humans x0 aliens
humans ~~~~~ ap mod x0 aliens
humans x0 aliens
humans x1 aliens
humans ap mod x1 ~~~~~ aliens
humans x1 aliens

17.4 Code

Todo: Revise the Haskell code to support new glyphs from the fifteenth message.

108 Chapter 17. #15. Send

CHAPTER

EIGHTEEN

#16. NEGATE

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

18.1 Image

This image was produced from the sixteenth radio transmission using previously contributed code.

18.2 Interpretation

18.3 Decoded

neg
ap neg 0 = 0
ap neg 1 = -1
ap neg -1 = 1
ap neg 2 = -2
ap neg -2 = 2
...

109

https://discord.gg/xvMJbas

Message From Space

110 Chapter 18. #16. Negate

CHAPTER

NINETEEN

#17. FUNCTION APPLICATION

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

19.1 Image

This image was produced from the seventeenth radio transmission using previously contributed code.

111

https://discord.gg/xvMJbas

Message From Space

19.2 Interpretation

ap f x is f(x)

The last two lines demonstrate that function application ap allows curried (i.e. partially evaluated) functions, by
defining inc as the function x -> 1 + x.

19.3 Decoded

ap
ap inc ap inc 0 = 2
ap inc ap inc ap inc 0 = 3
ap inc ap dec x0 = x0
ap dec ap inc x0 = x0
ap dec ap ap add x0 1 = x0
ap ap add ap ap add 2 3 4 = 9
ap ap add 2 ap ap add 3 4 = 9
ap ap add ap ap mul 2 3 4 = 10
ap ap mul 2 ap ap add 3 4 = 14
inc = ap add 1
dec = ap add ap neg 1
...

112 Chapter 19. #17. Function Application

CHAPTER

TWENTY

#18. S COMBINATOR

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

20.1 Image

This image was produced from the eighteenth radio transmission using previously contributed code.

20.2 Interpretation

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

20.3 Decoded

s
ap ap ap s x0 x1 x2 = ap ap x0 x2 ap x1 x2
ap ap ap s add inc 1 = 3
ap ap ap s mul ap add 1 6 = 42
...

113

https://discord.gg/xvMJbas
https://en.wikipedia.org/wiki/B,_C,_K,_W_system

Message From Space

114 Chapter 20. #18. S Combinator

CHAPTER

TWENTYONE

#19. C COMBINATOR

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

21.1 Image

This image was produced from the nineteenth radio transmission using previously contributed code.

21.2 Interpretation

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

21.3 Decoded

c
ap ap ap c x0 x1 x2 = ap ap x0 x2 x1
ap ap ap c add 1 2 = 3
...

115

https://discord.gg/xvMJbas
https://en.wikipedia.org/wiki/B,_C,_K,_W_system

Message From Space

116 Chapter 21. #19. C Combinator

CHAPTER

TWENTYTWO

#20. B COMBINATOR

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

22.1 Image

This image was produced from the twentieth radio transmission using previously contributed code.

22.2 Interpretation

See https://en.wikipedia.org/wiki/B,_C,_K,_W_system

22.3 Decoded

b
ap ap ap b x0 x1 x2 = ap x0 ap x1 x2
ap ap ap b inc dec x0 = x0
...

117

https://discord.gg/xvMJbas
https://en.wikipedia.org/wiki/B,_C,_K,_W_system

Message From Space

118 Chapter 22. #20. B Combinator

CHAPTER

TWENTYTHREE

#21. TRUE (K COMBINATOR)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

23.1 Image

This image was produced from the twenty-first radio transmission using previously contributed code.

23.2 Interpretation

Decoded as t, because it has a meaning of boolean True.

23.3 Decoded

t
ap ap t x0 x1 = x0
ap ap t 1 5 = 1
ap ap t t i = t
ap ap t t ap inc 5 = t
ap ap t ap inc 5 t = 6
...

119

https://discord.gg/xvMJbas

Message From Space

120 Chapter 23. #21. True (K Combinator)

CHAPTER

TWENTYFOUR

#22. FALSE

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

24.1 Image

This image was produced from the twenty-second radio transmission using previously contributed code.

24.2 Interpretation

Decoded as f, because it has a meaning of boolean False.

24.3 Decoded

f
ap ap f x0 x1 = x1
f = ap s t

121

https://discord.gg/xvMJbas

Message From Space

122 Chapter 24. #22. False

CHAPTER

TWENTYFIVE

#23. POWER OF TWO

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

25.1 Image

This image was produced from the twenty-third radio transmission using previously contributed code.

123

https://discord.gg/xvMJbas

Message From Space

124 Chapter 25. #23. Power of Two

Message From Space

25.2 Interpretation

Recursive function: pwr2 definition uses pwr2.

25.3 Decoded

pwr2
pwr2 = ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1
ap pwr2 0 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap ap ap c ap eq 0 1 0 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap ap ap eq 0 0 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = ap ap t 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 0
ap pwr2 0 = 1
ap pwr2 1 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap ap c ap eq 0 1 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap ap eq 0 1 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap f 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap b pwr2 ap add -1 1
ap pwr2 1 = ap ap mul 2 ap pwr2 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b
→˓pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap c ap eq 0 1 ap ap add -1 1 ap ap ap b ap mul
→˓2 ap ap b pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap eq 0 ap ap add -1 1 1 ap ap ap b ap mul 2 ap
→˓ap b pwr2 ap add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap ap ap eq 0 0 1 ap ap ap b ap mul 2 ap ap b pwr2 ap
→˓add -1 ap ap add -1 1
ap pwr2 1 = ap ap mul 2 ap ap t 1 ap ap ap b ap mul 2 ap ap b pwr2 ap add -1 ap
→˓ap add -1 1
ap pwr2 1 = ap ap mul 2 1
ap pwr2 1 = 2
ap pwr2 2 = ap ap ap s ap ap c ap eq 0 1 ap ap b ap mul 2 ap ap b pwr2 ap add -1 2
...
ap pwr2 2 = 4
ap pwr2 3 = 8
ap pwr2 4 = 16
ap pwr2 5 = 32
ap pwr2 6 = 64
ap pwr2 7 = 128
ap pwr2 8 = 256
...

25.2. Interpretation 125

Message From Space

126 Chapter 25. #23. Power of Two

CHAPTER

TWENTYSIX

#24. I COMBINATOR

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

26.1 Image

This image was produced from the twenty-fourth radio transmission using previously contributed code.

26.2 Interpretation

i(x) = x

26.3 Decoded

i
ap i x0 = x0
ap i 1 = 1
ap i i = i
ap i add = add
ap i ap add 1 = ap add 1
...

127

https://discord.gg/xvMJbas

Message From Space

128 Chapter 26. #24. I Combinator

CHAPTER

TWENTYSEVEN

#25. CONS (OR PAIR)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

27.1 Image

This image was produced from the twenty-fifth radio transmission using previously contributed code.

27.2 Interpretation

27.3 Decoded

cons
ap ap ap cons x0 x1 x2 = ap ap x2 x0 x1

129

https://discord.gg/xvMJbas

Message From Space

130 Chapter 27. #25. Cons (or Pair)

CHAPTER

TWENTYEIGHT

#26. CAR (FIRST)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

28.1 Image

This image was produced from the twenty-sixth radio transmission using previously contributed code.

28.2 Interpretation

28.3 Decoded

car
ap car ap ap cons x0 x1 = x0
ap car x2 = ap x2 t

131

https://discord.gg/xvMJbas

Message From Space

132 Chapter 28. #26. Car (First)

CHAPTER

TWENTYNINE

#27. CDR (TAIL)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

29.1 Image

This image was produced from the twenty-seventh radio transmission using previously contributed code.

29.2 Interpretation

29.3 Decoded

cdr
ap cdr ap ap cons x0 x1 = x1
ap cdr x2 = ap x2 f

133

https://discord.gg/xvMJbas

Message From Space

134 Chapter 29. #27. Cdr (Tail)

CHAPTER

THIRTY

#28. NIL (EMPTY LIST)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

30.1 Image

This image was produced from the twenty-eighth radio transmission using previously contributed code.

30.2 Interpretation

30.3 Decoded

nil
ap nil x0 = t

135

https://discord.gg/xvMJbas

Message From Space

136 Chapter 30. #28. Nil (Empty List)

CHAPTER

THIRTYONE

#29. IS NIL (IS EMPTY LIST)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

31.1 Image

This image was produced from the twenty-ninth radio transmission using previously contributed code.

31.2 Interpretation

31.3 Decoded

isnil
ap isnil nil = t
ap isnil ap ap cons x0 x1 = f

137

https://discord.gg/xvMJbas

Message From Space

138 Chapter 31. #29. Is Nil (Is Empty List)

CHAPTER

THIRTYTWO

#30. LIST CONSTRUCTION SYNTAX

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

32.1 Image

This image was produced from the thirtieth radio transmission using previously contributed code.

32.2 Interpretation

32.3 Decoded

(,)
() = nil
(x0) = ap ap cons x0 nil
(x0 , x1) = ap ap cons x0 ap ap cons x1 nil
(x0 , x1 , x2) = ap ap cons x0 ap ap cons x1 ap ap cons x2 nil
(x0 , x1 , x2 , x5) = ap ap cons x0 ap ap cons x1 ap ap cons x2 ap ap cons x5
→˓nil
...

139

https://discord.gg/xvMJbas

Message From Space

140 Chapter 32. #30. List Construction Syntax

CHAPTER

THIRTYTHREE

#31. VECTOR

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

33.1 Image

This image was produced from the thirty-first radio transmission using previously contributed code.

33.2 Interpretation

Alias for cons that looks nice in “vector” usage context.

33.3 Decoded

vec
vec = cons

141

https://discord.gg/xvMJbas

Message From Space

142 Chapter 33. #31. Vector

CHAPTER

THIRTYFOUR

#32. DRAW

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

34.1 Image

This image was produced from the thirty-second radio transmission using previously contributed code.

143

https://discord.gg/xvMJbas

Message From Space

34.2 Interpretation

It draws a list of coordinates as dots on a picture.

34.3 Decoded

draw
ap draw () = |picture1|
ap draw (ap ap vec 1 1) = |picture2|
ap draw (ap ap vec 1 2) = |picture3|
ap draw (ap ap vec 2 5) = |picture4|
ap draw (ap ap vec 1 2 , ap ap vec 3 1) = |picture5|
ap draw (ap ap vec 5 3 , ap ap vec 6 3 , ap ap vec 4 4 , ap ap vec 6 4 , ap ap vec 4
→˓5) = |picture6|
...

144 Chapter 34. #32. Draw

CHAPTER

THIRTYFIVE

#33. CHECKERBOARD

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

35.1 Image

This image was produced from the thirty-third radio transmission using previously contributed code.

35.2 Interpretation

Draws a checkerboard of the specified size.

35.3 Decoded

checkerboard
checkerboard = ap ap s ap ap b s ap ap c ap ap b c ap ap b ap c ap c ap ap s ap ap b
→˓s ap ap b ap b ap ap s i i lt eq ap ap s mul i nil ap ap s ap ap b s ap ap b ap b
→˓cons ap ap s ap ap b s ap ap b ap b cons ap c div ap c ap ap s ap ap b b ap ap c ap
→˓ap b b add neg ap ap b ap s mul div ap ap c ap ap b b checkerboard ap ap c add 2
ap ap checkerboard 7 0 = |picture1|
ap ap checkerboard 13 0 = |picture2|

145

https://discord.gg/xvMJbas

Message From Space

146 Chapter 35. #33. Checkerboard

CHAPTER

THIRTYSIX

#34. MULTIPLE DRAW

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

36.1 Image

This image was produced from the thirty-fourth radio transmission using previously contributed code.

36.2 Interpretation

Takes a list of lists of 2D-points and returns a list of rendered pictures.

It applies draw function to all items of the list.

36.3 Decoded

multipledraw
ap multipledraw nil = nil
ap multipledraw ap ap cons x0 x1 = ap ap cons ap draw x0 ap multipledraw x1

147

https://discord.gg/xvMJbas

Message From Space

148 Chapter 36. #34. Multiple Draw

CHAPTER

THIRTYSEVEN

#35. MODULATE LIST

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

37.1 Image

This image was produced from the thirty-fifth radio transmission using previously contributed code.

37.2 Interpretation

Apply #13. Modulate to a list constructed with #25. Cons (or Pair) or #30. List Construction Syntax.

149

https://discord.gg/xvMJbas

Message From Space

37.3 Decoded

mod cons
ap mod nil = [nil]
ap mod ap ap cons nil nil = [ap ap cons nil nil]
ap mod ap ap cons 0 nil = [ap ap cons 0 nil]
ap mod ap ap cons 1 2 = [ap ap cons 1 2]
ap mod ap ap cons 1 ap ap cons 2 nil = [ap ap cons 1 ap ap cons 2 nil]
ap mod (1 , 2) = [(1 , 2)]
ap mod (1 , (2 , 3) , 4) = [(1 , (2 , 3) , 4)]
...

150 Chapter 37. #35. Modulate List

CHAPTER

THIRTYEIGHT

#36. SEND (0)

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

38.1 Image

This image was produced from the thirty-sixth radio transmission using previously contributed code.

38.2 Interpretation

:1678847 is decreasing over time at a rate of 1/3 per second and will reach 0 at the icfp contest main round deadline.

38.3 Decoded

:1678847
ap send (0) = (1 , :1678847)

151

https://discord.gg/xvMJbas

Message From Space

152 Chapter 38. #36. Send (0)

CHAPTER

THIRTYNINE

#37. IS 0

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

39.1 Image

This image was produced from the thirty-seventh radio transmission using previously contributed code.

39.2 Interpretation

Function if0 compares the first argument to 0 and picks the second argument if equal, else third.

39.3 Decoded

if0
ap ap ap if0 0 x0 x1 = x0
ap ap ap if0 1 x0 x1 = x1

153

https://discord.gg/xvMJbas

Message From Space

154 Chapter 39. #37. Is 0

CHAPTER

FORTY

#38. INTERACT

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

40.1 Image

This image was produced from the thirty-eighth radio transmission using previously contributed code.

40.2 Interpretation

Is a function that takes an “interaction-protocol”, some data (maybe “protocol” dependent), and some pixel. It returns
some new data, and a list of pictures.

Note that during the execution it sometimes uses the send function to communicate with spacecraft.

// list function call notation
f38 protocol (flag, newState, data) = if flag == 0

then (modem newState, multipledraw data)
else interact protocol (modem newState) (send data)

interact protocol state vector = f38 protocol (protocol state vector)

// mathematical function call notation
f38(protocol, (flag, newState, data)) = if flag == 0

then (modem(newState), multipledraw(data))
else interact(protocol, modem(newState), send(data))

interact(protocol, state, vector) = f38(protocol, protocol(state, vector))

mod is defined on cons, nil and numbers only. So modem function seems to be the way to say that it’s argument
consists of numbers and lists only.

So we can assume that newState is always list of list of . . . of numbers.

155

https://discord.gg/xvMJbas

Message From Space

After experimenting with the galaxy interaction protocol we have found out several good ideas:

1. We can choose any vector to pass it to the interact function. But a convenient way to input this vectors — is
clicking on the image pixel from the previous interact execution result.

3. We need to draw the images passed to multipledraw somehow. A convenient way to do it — is to overlay images
one over another using different colors for different images.

40.3 Decoded

interact
ap modem x0 = ap dem ap mod x0
ap ap f38 x2 x0 = ap ap ap if0 ap car x0 (ap modem ap car ap cdr x0 , ap
→˓multipledraw ap car ap cdr ap cdr x0) ap ap ap interact x2 ap modem ap car ap cdr
→˓x0 ap send ap car ap cdr ap cdr x0
ap ap ap interact x2 x4 x3 = ap ap f38 x2 ap ap x2 x4 x3

156 Chapter 40. #38. Interact

CHAPTER

FORTYONE

#39. INTERACTION PROTOCOL

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

41.1 Image

This image was produced from the thirty-ninth radio transmission using previously contributed code.

157

https://discord.gg/xvMJbas

Message From Space

41.2 Interpretation

Start the protocol passing nil as the initial state and (0, 0) as the initial point. Then iterate the protocol passing
new points along with states obtained from the previous execution.

41.3 Decoded

interact
ap ap ap interact x0 nil ap ap vec 0 0 = (x16 , ap multipledraw x64)
ap ap ap interact x0 x16 ap ap vec x1 x2 = (x17 , ap multipledraw x65)
ap ap ap interact x0 x17 ap ap vec x3 x4 = (x18 , ap multipledraw x66)
ap ap ap interact x0 x18 ap ap vec x5 x6 = (x19 , ap multipledraw x67)
...

158 Chapter 41. #39. Interaction Protocol

CHAPTER

FORTYTWO

#40. STATELESS DRAWING PROTOCOL

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

42.1 Image

This image was produced from the fortieth radio transmission using previously contributed code.

42.2 Interpretation

42.3 Decoded

ap interact statelessdraw
ap ap statelessdraw nil x1 = (0 , nil , ((x1)))
statelessdraw = ap ap c ap ap b b ap ap b ap b ap cons 0 ap ap c ap ap b b cons ap ap
→˓c cons nil ap ap c ap ap b cons ap ap c cons nil nil
ap ap ap interact statelessdraw nil ap ap vec 1 0 = (nil , ([1,0]))
ap ap ap interact statelessdraw nil ap ap vec 2 3 = (nil , ([2,3]))
ap ap ap interact statelessdraw nil ap ap vec 4 1 = (nil , ([4,1]))
...

159

https://discord.gg/xvMJbas

Message From Space

160 Chapter 42. #40. Stateless Drawing Protocol

CHAPTER

FORTYTHREE

#41. STATEFUL DRAWING PROTOCOL

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

43.1 Image

This image was produced from the forty-first radio transmission using previously contributed code.

161

https://discord.gg/xvMJbas

Message From Space

43.2 Interpretation

It gives us back the variable bound to the draw state, so we can set the next pixel with the next call.

43.3 Decoded

ap interact :67108929
ap ap :67108929 x0 x1 = (0 , ap ap cons x1 x0 , (ap ap cons x1 x0))
:67108929 = ap ap b ap b ap ap s ap ap b ap b ap cons 0 ap ap c ap ap b b cons ap ap
→˓c cons nil ap ap c cons nil ap c cons
ap ap ap interact :67108929 nil ap ap vec 0 0 = ((ap ap vec 0 0) , ([0,0]))
ap ap ap interact :67108929 (ap ap vec 0 0) ap ap vec 2 3 = (x2 , ([0,0;2,3]))
ap ap ap interact :67108929 x2 ap ap vec 1 2 = (x3 , ([0,0;2,3;1,2]))
ap ap ap interact :67108929 x3 ap ap vec 3 2 = (x4 , ([0,0;2,3;1,2;3,2]))
ap ap ap interact :67108929 x4 ap ap vec 4 0 = (x5 , ([0,0;2,3;1,2;3,2;4,0]))
...

162 Chapter 43. #41. Stateful Drawing Protocol

CHAPTER

FORTYFOUR

#42. GALAXY

Note: Following documentation is a cooperative result combined from our Discord chat. Thanks to everyone who
helped!

44.1 Image

This image was produced from the forty-second radio transmission using previously contributed code.

44.2 Interpretation

We believe that this message tells us to run an interaction protocol called galaxy. This protocol is defined in the last
line of the huge message included on this page.

Messages #38 and #39 describe how to run a protocol. As we can see from message #38, a protocol takes a vector and
returns a list of pictures.

Messages #40 and #41 define two simple protocols and demonstrate their behavior during execution.

44.3 Huge Transmission Text

Download the textual representation of the large transmission.

163

https://discord.gg/xvMJbas

Message From Space

44.4 Decoded

ap interact galaxy = ...

164 Chapter 44. #42. Galaxy

CHAPTER

FORTYFIVE

FINAL TOURNAMENT

45.1 What We Know So Far

We continued to explore our “galaxy evaluator” and here’s the summary of our findings.

We were demonstrated a historical perspective of lots of civilisations (including us!) spread throughout our Galaxy.

We saw an intergalactic tournament among the civilisations that lasts for ages.

165

Message From Space

The numbers at the bottom of this screen indicate that on July 20 at 13:00 UTC (a wild guess!) there will be the final
battle between an alien race and the humankind. What happens if the humankind loses? We don’t know (yet).

We could also watch the “replays” of the past battles. Then we were able to explore what looks like a series of “tutorial
levels” demonstrating the basic concepts of space combat. No doubt we can use these materials to learn how to fight.

We were able to explore what a “battle” is. One (or many) “ships” seem to “orbit” a strange square “planet”.

166 Chapter 45. Final Tournament

Message From Space

Also, these “ships” bear one of two responsibilities: they are either “attacking ships” or “defending ships”. In order to
win a “battle”, “attackers” have to destroy other ships in a fixed number of “turns”. Unlike “attackers”, “defenders”
win a “battle” if they are not destroyed in a fixed number of “turns”. Note that we don’t know if a “draw” is a possible
result of a “battle”.

Although we were unable to explore all “tutorial levels” and get through them, we’ve made further progress. We
noticed that the “states” (see the message #42) of the “evaluator” are nearly identical after every “battle” that we have
explored. The only difference is that a single number keeps incrementing. We’ve tried our luck and put a larger number
in there—and that was the right move.

We believe that we’ve managed to enter the “multiplayer mode” which can be used to fight other players. To find the

45.1. What We Know So Far 167

Message From Space

best candidate to fight for the humankind in the final battle, we are going to set up our own local tournament using this
“multiplayer mode”. We will accept submissions for this tournament before the final battle countdown ends.

45.2 How to Play the Local Tournament

This section describes the way we run your submitted code on our server. Your submission can play games using its
internal Galaxy Pad UI instance or, alternatively, via direct proxy calls.

We run some preparation steps for you, so you don’t have to do it:

1. In our internal Galaxy Pad instance we create a new game and generate player keys for both attacker and
defender. First, we click on the two-player game button:

Then, click on the Galaxy button:

2. We run your submission container with serverUrl and playerKey as command line arguments. Note
that you must use provided serverUrl as a base URL for all outgoing aliens/send requests to alien
proxy. For example, serverUrl can be http://server:12345. In this case you should send requests to
http://server:12345/aliens/send.

168 Chapter 45. Final Tournament

Message From Space

3. Your bot must join the game using the provided playerKey. Your bot can create its own internal Galaxy Pad
instance and do it via the UI. First, click on the two-player game button:

Then, click on the Player Key button on the left and input player key pixel by pixel (you can hack the state to
avoid manual input):

Then, click on the top-left Player Key button to confirm joining the game.

Alternatively your bot can do it without the Galaxy Pad using our HTTP proxy directly via JOIN request (see
below).

4. Your bot must choose your initial ship parameters and start playing after successfuly joining. Your bot can do
it via your internal Galaxy Pad UI:

45.2. How to Play the Local Tournament 169

Message From Space

Then, click on the Galaxy button to start the game.

Alternatively your bot can do it without the Galaxy Pad using our HTTP proxy directly via START request (see
below).

5. Your bot must issue commands for your ships until the game is finished. Your bot can do it via your internal
Galaxy Pad UI as you did in the tutorials:

170 Chapter 45. Final Tournament

Message From Space

Clicking on the Galaxy button sends all your selected commands to the alien proxy.

Alternatively your bot can do it without the Galaxy Pad using our HTTP proxy directly via COMMANDS request
(see below).

45.3 Timeouts

Each action required from your bot must be done fast enough, or we will disconnect it from the game and give the
victory to your opponent.

• JOIN: you should send it within 10 seconds after we run your run.sh.

• START: you should send it within 1 second after you receive the response to JOIN.

• COMMANDS: you should send it within 1 second after you receive the response to previous START or
COMMANDS.

Also you have a timeout for the entire game (all COMMANDs, but not JOIN and START): 2 minute total. We know
that a game runs for a maximum of 384 turns, so it’s up to you how to use this time.

45.3. Timeouts 171

Message From Space

45.4 Implementation Details

Of course, you can just run your Galaxy Pad and emulate clicks on it.

But we also have partially reverse-engineered the protocol so you can use this knowledge to send requests to the Alien
Proxy directly, without running your Galaxy Pad at all.

Here is a pseudo code:

main (args)
{

// parse command line arguments
serverUrl = args[0]
playerKey = args[1]

// make valid JOIN request using the provided playerKey
joinRequest = makeJoinRequest(playerKey)

// send it to aliens and get the GameResponse
gameResponse = send(serverUrl, joinRequest)

// make valid START request using the provided playerKey and gameResponse
→˓returned from JOIN

startRequest = makeStartRequest(playerKey, gameResponse)

// send it to aliens and get the updated GameResponse
gameResponse = send(serverUrl, startRequest)

while (true) // todo: you MAY detect somehow that game is finished using
→˓gameResponse

{
// make valid COMMANDS request using the provided playerKey and gameResponse

→˓returned from START or previous COMMANDS
commandsRequest = makeCommandsRequest(playerKey, gameResponse)

// send it to aliens and get the updated GameResponse
gameResponse = send(serverUrl, commandsRequest)

}
}

45.5 Protocol

We denote unknown data as xi below.

45.5.1 CREATE

Note: You shouldn’t call CREATE in your submissions. We do that for you. See Implementation Details.

One can use this request to create the new playerKeys to use them in the JOIN request.

(1, 0)

Response to that request has format:

172 Chapter 45. Final Tournament

Message From Space

(1, ((0, attackPlayerKey), (1, defenderPlayerKey)))

45.5.2 JOIN

(2, playerKey, (...unknown list...))

Purpose of the third item of this list is still unclear for us and we saw only empty list (nil) here. Maybe you will
discover more and use it. . .

Response is described in the GameResponse section.

45.5.3 START

(3, playerKey, (x0, x1, x2, x3))

The third item of this list is always a list of 4 numbers – it’s the initial ship parameters.

We noticed, that START doesn’t finish successfully when x3 is 0 or xi’s are too large.

Response is described in the GameResponse section.

45.5.4 COMMANDS

(4, playerKey, commands)

commands is the list of issued commands. Each item has format (type, shipId, ...), where ... denotes
command-specific parameters. Some types of commands are described below.

Response is described in the GameResponse section.

Accelerate command

(0, shipId, vector)

Accelerates ship identified by shipId to the direction opposite to vector.

Detonate command

(1, shipId)

Detonates ship identified by shipId.

45.5. Protocol 173

Message From Space

Shoot command

(2, shipId, target, x3)

target is a vector with coordinates of the shooting target.

45.5.5 GameResponse

In the case of wrong request:

(0)

In case of correct request:

(1, gameStage, staticGameInfo, gameState)

• 1 indicates success

• gameStage is a number

– 0 indicates that the game has not started yet

– 1 indicates that the game has already started

– 2 indicates that the game has finished

• staticGameInfo doesn’t change from turn to turn during the whole game

• gameState changes from turn to turn

staticGameInfo = (x0, role, x2, x3, x4)

role

• 0 indicates that you are in the attacker role

• 1 indicates that you are in the defender role

gameState = (gameTick, x1, shipsAndCommands)

• gameTick is the time inside the game

• shipsAndCommands is a list of items, each item has a structure of (ship, appliedCommands)

– appliedCommands is a list of commands applied to the ship on the previous tick

– ship is the ship state description

ship = (role, shipId, position, velocity, x4, x5, x6, x7)

• position is a vector with the ship coordinates

• velocity is a vector with the ship velocity

174 Chapter 45. Final Tournament

Message From Space

45.6 Scoring

Local tournament consists of several stages. Each stage has a hard deadline:

1. 24 hours before the Alien Deadline (not scored, see below)

2. 18 hours before the Alien Deadline

3. 12 hours before the Alien Deadline

4. 9 hours before the Alien Deadline

5. 6 hours before the Alien Deadline

6. 4 hours before the Alien Deadline

7. 2 hours before the Alien Deadline (leaderboard frozen)

8. Alien Deadline (July 20 at 13:00 UTC)

Teams submit their solutions as described in the submission system documentation. A team must select only one built
and tested submission as their active submission selected for rating games. This choice is made via the Submissions
page (click on a row to select). Note that new commits do not automatically become active unless there is a #release
word in the commit message.

Before letting team’s submission participate in the tournament our system will test the submission’s ability to join
and start a game as an attacker and as a defender. It means that vanilla starter kits are no longer considered valid
submissions.

At the end of each stage our system will stop accepting new submissions for that stage. It means that your active
submission at the end of the stage becomes your final submission for that stage.

Our tournament system uses TrueSkill rating system to pair opponents and rank submissions in each stage. After the
end of each stage our system will run additional rounds of games until all the TrueSkill ratings settle. Then we will
assign score to top 50 submissions according to a formula:

𝑠𝑐𝑜𝑟𝑒 = ⌊50(50−𝑟𝑎𝑛𝑘)/50⌋

. . . where rank is zero-based position in the leaderboard for this stage.

Total score for a team is the sum of the scores of that team for stages 2..8. The first stage earns no score and serves to
make you familiar with the system.

After the final Alien Deadline we will stop accepting new submissions entirely. We will trigger one final build in all
submission branches in all repositories exactly at the moment of the deadline. Please note that we build only the latest
commit in each branch. If you push N commits at once, it will result in only one built submission. Our build process
is not instant: the checkout can happen several minutes after the deadline. Please don’t push anything you don’t want
to submit after the deadline.

As soon as all the submissions are built and tested, we’ll make an announcement. After this announcement you will
have exactly 30 minutes to select your final submission for the whole tournament. This final submission will play
in the stage 8 until all the TrueSkill ratings settle.

Then we will run an additional tournament stage between the top 20 teams ranked by the total score earned in stages
2..8. Your final submission for the whole tournament will play this additional stage. Winners of this additional stage
will fight against the aliens for the honor of the humankind. And declared as winners of the ICFP Contest 2020, of
course.

Results of this additional stage and the whole contest will be made public at the ICFP 2020 in August 2020.

45.6. Scoring 175

https://github.com/icfpcontest2020/dockerfiles/blob/master/README.md
https://icfpcontest2020.github.io/#/submissions
https://icfpcontest2020.github.io/#/submissions
https://en.wikipedia.org/wiki/TrueSkill

Message From Space

176 Chapter 45. Final Tournament

CHAPTER

FORTYSIX

GALAXY EVALUATOR IN PSEUDOCODE

// See video course https://icfpcontest2020.github.io/#/post/2054
class Expr

optional Expr Evaluated

class Atom extends Expr
string Name

class Ap extends Expr
Expr Fun
Expr Arg

class Vect
number X
number Y

Expr cons = Atom("cons")
Expr t = Atom("t")
Expr f = Atom("f")
Expr nil = Atom("nil")

Map<string, Expr> functions = PARSE_FUNCTIONS("galaxy.txt")

// See https://message-from-space.readthedocs.io/en/latest/message39.html
Expr state = nil
Vect vector = Vect(0, 0)

while(true)
Expr click = Ap(Ap(cons, Atom(vector.X)), Atom(vector.Y))
var (newState, images) = interact(state, click)
PRINT_IMAGES(images)
vector = REQUEST_CLICK_FROM_USER()
state = newState

// See https://message-from-space.readthedocs.io/en/latest/message38.html
(Expr, Expr) interact(Expr state, Expr event)

Expr expr = Ap(Ap(Atom("galaxy"), state), event)
Expr res = eval(expr)
// Note: res will be modulatable here (consists of cons, nil and numbers only)
var [flag, newState, data] = GET_LIST_ITEMS_FROM_EXPR(res)
if (asNum(flag) == 0)

return (newState, data)
return interact(newState, SEND_TO_ALIEN_PROXY(data))

Expr eval(Expr expr)
(continues on next page)

177

Message From Space

(continued from previous page)

if (expr.Evaluated != null)
return expr.Evaluated

Expr initialExpr = expr
while (true)

Expr result = tryEval(expr)
if (result == expr)

initialExpr.Evaluated = result
return result

expr = result

Expr tryEval(Expr expr)
if (expr.Evaluated != null)

return expr.Evaluated
if (expr is Atom && functions[expr.Name] != null)

return functions[expr.Name]
if (expr is Ap)

Expr fun = eval(expr.Fun)
Expr x = expr.Arg
if (fun is Atom)

if (fun.Name == "neg") return Atom(-asNum(eval(x)))
if (fun.Name == "i") return x
if (fun.Name == "nil") return t
if (fun.Name == "isnil") return Ap(x, Ap(t, Ap(t, f)))
if (fun.Name == "car") return Ap(x, t)
if (fun.Name == "cdr") return Ap(x, f)

if (fun is Ap)
Expr fun2 = eval(fun.Fun)
Expr y = fun.Arg
if (fun2 is Atom)

if (fun2.Name == "t") return y
if (fun2.Name == "f") return x
if (fun2.Name == "add") return Atom(asNum(eval(x)) + asNum(eval(y)))
if (fun2.Name == "mul") return Atom(asNum(eval(x)) * asNum(eval(y)))
if (fun2.Name == "div") return Atom(asNum(eval(y)) / asNum(eval(x)))
if (fun2.Name == "lt") return asNum(eval(y)) < asNum(eval(x)) ? t : f
if (fun2.Name == "eq") return asNum(eval(x)) == asNum(eval(y)) ? t : f
if (fun2.Name == "cons") return evalCons(y, x)

if (fun2 is Ap)
Expr fun3 = eval(fun2.Fun)
Expr z = fun2.Arg
if (fun3 is Atom)

if (fun3.Name == "s") return Ap(Ap(z, x), Ap(y, x))
if (fun3.Name == "c") return Ap(Ap(z, x), y)
if (fun3.Name == "b") return Ap(z, Ap(y, x))
if (fun3.Name == "cons") return Ap(Ap(x, z), y)

return expr

Expr evalCons(Expr a, Expr b)
Expr res = Ap(Ap(cons, eval(a)), eval(b))
res.Evaluated = res
return res

number asNum(Expr n)
if (n is Atom)

return PARSE_NUMBER(n.Name)
ERROR("not a number")

178 Chapter 46. Galaxy Evaluator in Pseudocode

CHAPTER

FORTYSEVEN

ALIEN PROXY PROTOCOL

Alien Proxy allows you to send requests to the spacecraft in orbit using our antenna.

It’s a simple HTTP server.

47.1 Base Url

https://api.pegovka.space/

47.2 Send a Request to Spacecraft

Pass modulated string in the request body with a Content-Type: text/plain HTTP header.

Relative URL: /aliens/send

Sample request:

POST /aliens/send HTTP/1.1

1101000

47.2.1 Possible Responses

200 OK

You will get this response if the spacecraft responds fast enough.

Response body will contain modulated spacecraft response with a Content-Type: text/plainHTTP header.

Sample response:

HTTP/1.1 200 OK

1101100001110111110111101010101011100

179

https://api.pegovka.space/

Message From Space

302 Found

You will get this response if the spacecraft doesn’t respond fast enough.

If the spacecraft doesn’t respond fast enough we return 302 Found status code. The Location response HTTP
header will contain an URL where you can ask for the response again later. In fact, this header will always contain /
aliens/{responseId}. It’s a long-polling protocol, so you can make a new request to this location immediately
after you got it. Many HTTP client implementations, e.g. C#’s HttpClient, can follow redirects automatically, so
you don’t deal with this.

Sample response:

HTTP/1.1 302 Found
Location: /aliens/75960227-653C-47E3-A47A-118A46AFFD4C

47.3 Get a Response From Spacecraft

Use this to get a response to the request you have sent earlier, in case the spacecraft didn’t respond fast enough.

Relative URL: /aliens/{responseId}

Possible responses are the same as in /aliens/send.

180 Chapter 47. Alien Proxy Protocol

	A Personal Appeal to Scientists and Engineers From All Over the World
	Condensed Version
	#1. Numbers
	#2. Numbers (cont.)
	#3. Negative Numbers
	#4. Equality
	#5. Successor
	#6. Predecessor
	#7. Sum
	#8. Variables
	#9. Product
	#10. Integer Division
	#11. Equality and Booleans
	#12. Strict Less-Than
	#13. Modulate
	#14. Demodulate
	#15. Send
	#16. Negate
	#17. Function Application
	#18. S Combinator
	#19. C Combinator
	#20. B Combinator
	#21. True (K Combinator)
	#22. False
	#23. Power of Two
	#24. I Combinator
	#25. Cons (or Pair)
	#26. Car (First)
	#27. Cdr (Tail)
	#28. Nil (Empty List)
	#29. Is Nil (Is Empty List)
	#30. List Construction Syntax
	#31. Vector
	#32. Draw
	#33. Checkerboard
	#34. Multiple Draw
	#35. Modulate List
	#36. Send (0)
	#37. Is 0
	#38. Interact
	#39. Interaction Protocol
	#40. Stateless Drawing Protocol
	#41. Stateful Drawing Protocol
	#42. Galaxy
	Final Tournament
	Galaxy Evaluator in Pseudocode
	Alien Proxy Protocol

